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Foreword

With the growing availability of large datasets, 
new algorithmic techniques and increased 
computing power, artificial intelligence (AI) 
is becoming an established tool used by 
researchers across scientific fields. 

Now more than ever, we need to understand 
the extent of the transformative impact of AI on 
science and what scientific communities need 
to do to fully harness its benefits.

This report, Science in the age of AI, explores 
this topic. Building on the experiences of more 
than 100 scientists who have incorporated 
AI into their workflows, it delves into how 
AI technologies, such as deep learning or 
large language models, are transforming the 
nature and methods of scientific inquiry. It also 
explores how notions of research integrity, 
research skills and research ethics are 
inevitably changing – and what the implications 
are for the future of science and scientists. 

New opportunities are emerging. The case 
studies in this report demonstrate that AI 
is enhancing the efficiency, accuracy, and 
creativity of scientists. Across multiple fields, 
the application of AI is breaking new ground 
by facilitating, for example, the discovery of 
rare diseases or enabling the development 
of more sustainable materials.

Playing the role of tutor, peer or assistant, 
scientists are using AI applications to 
perform tasks at a pace and scale previously 
unattainable. There is much excitement around 
the synergy between human intelligence 
and AI and how this partnership is leading 
to scientific advancements. However, to 
ensure robustness and mitigate harms, human 
judgement and expertise will continue to be of 
utmost importance. 

The rapid uptake of AI in science has also 
presented challenges related to its safe and 
rigorous use. A growing body of irreproducible 
studies are raising concerns regarding the 
robustness of AI-based discoveries. The black-
box and non-transparent nature of AI systems 
creates challenges for verification and external 
scrutiny. Furthermore, its widespread but 
inequitable adoption raises ethical questions 
regarding its environmental and societal 
impact. Yet, ongoing advancements in making 
AI systems more transparent and ethically 
aligned hold the promise of overcoming 
these challenges.

In this regard, the report calls for a balanced 
approach that celebrates the potential of 
AI in science while not losing sight of the 
challenges that still need to be overcome. 
The recommendations offer a pathway that 
leverages open science principles to enable 
reliable AI-driven scientific contributions, while 
creating opportunities for resource sharing 
and collaboration. They also call for policies 
and practices that recognise the links between 
science and society, emphasising the need 
for ethical AI, equitable access to its benefits, 
and the importance of keeping public trust in 
scientific research. 

While it’s clear that AI can significantly aid 
scientific advancement, the goal remains to 
ensure these breakthroughs benefit humanity 
and the planet. We hope this report inspires 
actors across the scientific ecosystem to 
engage with the recommendations and work 
towards a future where we can realise the 
potential of AI to transform science and benefit 
our collective wellbeing.

Professor Alison Noble CBE FREng FRS, 
Foreign Secretary of the Royal Society and 
Chair of the Royal Society Science in the 
Age of AI Working Group.

Image: Professor Alison 
Noble FRS.
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Executive summary

1  Sejnowski T. 2018 The Deep Learning Revolution. MIT press

2 Royal Society and Department for Science, Innovation and Technology workshop on horizon scanning AI safety risks 
across scientific disciplines, October 2023. See https://royalsociety.org/current-topics/ai-data/. (accessed 7 May 2024)

The unprecedented speed and scale of 
progress with artificial intelligence (AI) in recent 
years suggests society may be living through 
an inflection point. The virality of platforms 
such as ChatGPT and Midjourney, which can 
generate human-like text and image content, 
has accelerated public interest in the field 
and raised flags for policymakers who have 
concerns about how AI-based technologies 
may be integrated into wider society. Beyond 
this, comments made by prominent computer 
scientists and public figures regarding the 
risks AI poses to humanity have transformed 
the subject into a mainstream political issue. 
For scientific researchers, AI is not a novel 
topic and has been adopted in some form for 
decades. However, the increased investment, 
interest, and adoption within academic and 
industry-led research has led to a ‘deep 
learning revolution’1 that is transforming the 
landscape of scientific discovery.

Enabled by the advent of big data (for instance, 
large and heterogenous forms of data gathered 
from telescopes, satellites, and other advanced 
sensors), AI-based techniques are helping to 
identify new patterns and relationships in large 
datasets which would otherwise be too difficult 
to recognise. This offers substantial potential 
for scientific research and is encouraging 
scientists to adopt more complex techniques 
that outperform existing methods in their fields. 
The capability of AI tools to identify patterns 
from existing content and generate predictions 
of new content, also allows scientists to run 
more accurate simulations and create synthetic 
data. These simulations, which draw data 
from lots of different sources (potentially in 
real time), can help decision-makers assess 
more accurately the efficacy of potential 
interventions and address pressing societal 
or environmental challenges. 

The opportunities of AI for scientific research 
are highlighted throughout this report and 
explored in depth through three case studies 
on its application for climate science, material 
science, and rare disease diagnosis.

Alongside these opportunities, there are 
various challenges arising from the increased 
adoption of AI. These include reproducibility 
(in which other researchers cannot replicate 
experiments conducted using AI tools); 
interdisciplinarity (where limited collaboration 
between AI and non-AI disciplines can lead to 
a less rigorous uptake of AI across domains); 
and environmental costs (due to high energy 
consumption being required to operate 
large compute infrastructure). There are also 
growing barriers to the effective adoption 
of open science principles due to the black-
box nature of AI systems and the limited 
transparency of commercial models that power 
AI-based research. Furthermore, the changing 
incentives across the scientific ecosystem 
may be increasing pressure on researchers 
to incorporate advanced AI techniques at the 
neglect of more conventional methodologies, or 
to be ‘good at AI’ rather than ‘good at science’2.

These challenges, and potential solutions, 
are detailed throughout this report in the 
chapters on research integrity; skills and 
interdisciplinarity; innovation and the private 
sector; and research ethics.

https://royalsociety.org/current-topics/ai-data
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As an organisation that exists to promote the 
use of science for the benefit of humanity, 
this subject is of great importance to the 
Royal Society. This report, Science in the Age 
of AI, provides an overview of key issues 
to address for AI to positively transform the 
scientific endeavour. Its recommendations, 
when taken together, should ensure that the 
application of AI in scientific research is able 
to reach its full potential and help maintain 
public trust in science and the integrity of the 
scientific method.

This report has been guided by a working 
group of leading experts in AI and applied 
science and informed by a series of activities 
undertaken by the Royal Society. These 
include interviews with Fellows of the Royal 
Society; a global patent landscape analysis; 
a historical literature review; a commissioned 
taxonomy of AI for scientific applications; 
and several workshops on topics ranging 
from large language models to immersive 
technologies. These activities are listed in full 
in the appendix. In total, more than 100 leading 
scientific researchers from diverse disciplines 
contributed to this report.

While the report covers some of the critical 
areas related to the role of AI in scientific 
research, it is not comprehensive and does 
not cover, for example, the provision of high-
performance computing infrastructure, the 
potential of artificial general intelligence, nor a 
detailed breakdown of the new skills required 
across industries and academia. 

3 The Royal Society. Mathematical Futures Programme. See https://royalsociety.org/news-resources/projects/
mathematical-futures/ (accessed 23 April 2024)

4 The Royal Society. Science 2040. See https://royalsociety.org/news-resources/projects/science2040/  
(accessed 23 April 2024)

5 Berman B, Chubb J, and Williams K, 2024. The use of artificial intelligence in science, technology, engineering, and 
medicine. The Royal Society. See https://royalsociety.org/news-resources/projects/science-in-the-age-of-ai/

Further research questions are outlined below. 
The Society’s two programmes of work on 
Mathematical Futures3 and Science 20404 will 
explore, in more depth, relevant challenges 
related to skills and universities.

Key findings
• Beyond landmark cases like AlphaFold, AI 

applications can be found across all STEM 
fields, with a concentration in fields such 
as medicine, materials science, robotics, 
agriculture, genetics, and computer science. 
The most prominent AI techniques across 
STEM fields include artificial neural networks, 
deep learning, natural language processing 
and image recognition5.

• High quality data is foundational for AI 
applications, but researchers face barriers 
related to the volume, heterogeneity, 
sensitivity, and bias of available data. The 
large volume of some scientific data (eg 
collected from telescopes and satellites) can 
total petabytes, making objectives such as 
data sharing and interoperability difficult to 
achieve. The heterogeneity of data collected 
from sensor data also presents difficulties 
for human annotation and standardisation, 
while the training of AI models on biased 
inputs can likely lead to biased outputs. 
Given these challenges, data curators 
and information managers are essential to 
maintain quality and address risks linked 
to artificial data generation, such as data 
fabrication, poisoning, or contamination.

https://royalsociety.org/news-resources/projects/science-in-the-age-of-ai/
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• Industry and academic institutions are 
advancing AI innovation for scientific 
research6. The past decade has seen a 
surge in patent applications related to AI for 
science, with China, the United States, Japan, 
and South Korea dominating the number of 
patents filed in these territories. A review 
commissioned for this report suggests the 
valuation of the global AI market (as of 2022) 
is approximately £106.99 billion7. 

• China contributes approximately 62% of the 
patent landscape. Within Europe, the UK 
has the second largest share of AI patents 
related to life sciences after Germany, with 
academic institutions such as the University 
of Oxford, Imperial College, and Cambridge 
University featuring prominently among the 
top patent filers in the UK. Companies such 
as Alphabet, Siemens, IBM, and Samsung 
appear to exhibit considerable influence 
across scientific and engineering fields.

• The black-box, and potentially proprietary, 
nature of AI tools is limiting the 
reproducibility of AI-based research. Barriers 
such as insufficient documentation, limited 
access to essential infrastructures (eg code, 
data, and computing power) and a lack 
of understanding of how AI tools reach 
their conclusions (explainability) make it 
difficult for independent researchers to 
scrutinise, verify and replicate experiments.  
 
 
 
 
 

6 Ahmed, N, Wahed, M, & Thompson, N. C. 2023. The growing influence of industry in AI research. Science, 379(6635), 
884-886. (DOI: 10.1126/science.ade2420)

7 IP Pragmatics, 2024 Artificial intelligence related inventions. The Royal Society. See https://royalsociety.org/news-
resources/projects/science-in-the-age-of-ai/

8 UNESCO Recommendation on Open Science. 2021. See: https://www.unesco.org/en/legal-affairs/recommendation-
open-science  (accessed 6 February 2024) 

9 Kaiser J. 2023. Funding agencies say no to AI peer review. Science. 14 July 2023 .See: https://www.science.org/
content/article/science-funding-agencies-say-no-using-ai-peer-review (accessed 23 January 2024)

10 Harker J. 2023. Science Journals set new authorship guidelines for AI-generated text. National Institute of 
Environmental Health Sciences. See https://factor.niehs.nih.gov/2023/3/feature/2-artificial-intelligence-ethics. 
(accessed 23 January 2024)

The significant potential to advance 
discoveries using complex deep learning 
models may also encourage scientists or 
funders to prioritise AI use over rigour. 
The adoption of open science principles 
and practices could help address these 
challenges and enhance scientific integrity8.

• Interdisciplinary collaboration is essential to 
bridge skill gaps and optimise the benefits 
of AI in scientific research. By sharing 
knowledge and skills from each other’s 
fields, collaboration between AI and domain 
subject experts (including researchers from 
the arts, humanities, and social sciences) can 
help produce more effective and accurate AI 
models. This is being prevented, however, 
by siloed research environments and an 
incentive structure that does not reward 
interdisciplinary collaboration in terms of 
contribution towards career progression.

• Generative AI tools can assist the 
advancement of scientific research. They 
hold promise for expediting routine scientific 
tasks, such as processing unstructured 
data, solving complex coding challenges, 
or supporting the multilingual translation of 
academic articles. In addition, there may be 
a place for text-generation models to be 
used for academic and non-academic written 
tasks, with potential implications for scholarly 
communications and research assessment. 
In response, funders and academic 
institutions are setting norms to prevent  
non-desirable uses9,10.

https://doi.org/10.1126/science.ade2420
https://royalsociety.org/news-resources/projects/science-in-the-age-of-ai/
https://royalsociety.org/news-resources/projects/science-in-the-age-of-ai/
https://www.unesco.org/en/legal-affairs/recommendation-open-science
https://www.unesco.org/en/legal-affairs/recommendation-open-science
https://www.science.org/content/article/science-funding-agencies-say-no-using-ai-peer-review
https://www.science.org/content/article/science-funding-agencies-say-no-using-ai-peer-review
https://factor.niehs.nih.gov/2023/3/feature/2-artificial-intelligence-ethics
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Future research questions 
The following topics emerged in research 
activities as key considerations for the future  
of AI in science: 

1. AI and computing infrastructures for 
science: How can AI workloads be 
optimised to harness the full potential of 
heterogeneous computing infrastructures in 
scientific research, considering the diverse 
requirements of different scientific domains?

2. AI and small data: What are the implications 
of the growing use of AI for researchers 
in which only small data is available? How 
can AI techniques be effectively used 
to augment small datasets for training 
purposes? What trade-offs exist between 
model size reduction and preservation 
of performance when applied to small 
data scenarios?

3. AI and inequities in the scientific 
system: What barriers exist in providing 
equitable access to AI technologies in 
underrepresented communities? How can 
AI be used to broaden participation among 
scientific and expert communities, including 
underrepresented scholars and non-
scientist publics?

4. AI and intellectual property: What inputs 
of AI systems (datasets, algorithms, or 
outputs) are crucial for intellectual property 
protection, and in what ways does it interact 
with the application of open science 
principles in science?

5. AI and the future of skills for science: 
How are the skill requirements in scientific 
research changing with the increasing 
integration of AI? What competencies will 
be essential for researchers in the future 
and what efforts are needed to promote AI 
literacy across diverse scientific disciplines?  

6. AI and the future of scholarly 
communication: How is the landscape 
of scholarly and science communication 
evolving with the integration of AI 
technologies? How can AI be leveraged 
to improve knowledge translation, 
multilingualism, and multimodality in 
scholarly outputs? 

7. AI and environmental sustainability: 
What role can AI play in promoting 
sustainable practices within the scientific 
community? How can AI algorithms 
be optimised to enhance the energy 
efficiency of environmental modelling, and 
contribute to sustainable practices in fields 
such as climate science, ecology, and 
environmental monitoring? 

8. AI standards and scientific research:  
How can AI standards help address the 
challenges of reproducibility or interoperability 
in AI-based scientific research? How can 
the scientific community contribute to the 
establishment of AI standards?
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Recommendations

AREA FOR ACTION: ENHANCE ACCESS TO ESSENTIAL AI INFRASTRUCTURES  

AND TOOLS

RECOMMENDATION 1

Governments, research funders and AI developers should improve 
access to essential AI infrastructures

11 Technopolis Group, Alan Turing Institute. 2022. Review of Digital Research Infrastructure Requirements for AI.  
See: https://www.turing.ac.uk/sites/default/files/2022-09/ukri-requirements-report_final_edits.pdf  
(accessed February 6 2024)

12 UKRI. Transforming our world with AI. See: https://www.ukri.org/publications/transforming-our-world-with-ai/  
(accessed 6 February 2024)

13 United Nations. 2023 Interim Report: Governing AI for Humanity. See: https://www.un.org/sites/un2.un.org/files/
ai_advisory_body_interim_report.pdf (accessible 6 February 2024)

14 Lannelongue, L, et al. 2023. Greener principles for environmentally sustainable computational science.  
Nat Comput Sci3, 514–521. (https://doi.org/10.1038/s43588-023-00461-y)

15 The Royal Society. 2023 Privacy Enhancing Technologies. See https://royalsociety.org/topics-policy/projects/privacy-
enhancing-technologies/ (accessed 21 December 2023).

16 The Royal Society. 2020 Digital technology and the planet: Harnessing computing to achieve net zero.  
See https://royalsociety.org/topics-policy/projects/digital-technology-and-the-planet/ (accessed 21 December 2023).

Access to computing resources has been 
critical for major scientific breakthroughs, such 
as protein folding with AlphaFold. Despite 
this, compute power and data infrastructures 
for AI research are not equally accessible or 
distributed across research communities11. 
Scientists from diverse disciplines require access 
to infrastructure to adopt more complex AI 
techniques, process higher volume and types of 
data, and ensure quality in AI-based research.

Proposals to improve access have 
included institutions sponsoring access to 
supercomputing12 and the establishment of 
regional hubs – akin to a CERN for AI13. Wider 
access can extend the benefits of AI to a 
greater number of disciplines, improve the 
competitiveness of non-industry researchers, 
and contribute towards more rigorous 
science by enabling reproducibility at scale. 
Expanding access to computing must also 
be informed by environmentally sustainable 
computational science (ESCS) best practices, 
including the measurement and reporting of 
environmental impacts14. 

Actions to enhance access to AI 
infrastructures and tools may include: 
1. Funders, industry partners, and research 

institutions with computing facilities actively 
sharing essential AI infrastructures such as 
high-performance computing power and 
data resources.

2. Relevant stakeholders (eg government 
agencies, research institutions, industry, 
and international organisations) ensuring 
access to high-quality datasets and 
interoperable data infrastructures across 
sectors and regions. This could involve 
advancing access to sensitive data through 
privacy enhancing technologies and 
trusted research environments15.

3. Research funders supporting strategies to 
monitor and mitigate the environmental impact 
associated with increased computational 
demands and advancing the principle of 
energy proportionality in AI applications16. 

https://www.turing.ac.uk/sites/default/files/2022-09/ukri-requirements-report_final_edits.pdf
https://www.un.org/sites/un2.un.org/files/ai_advisory_body_interim_report.pdf
https://www.un.org/sites/un2.un.org/files/ai_advisory_body_interim_report.pdf
https://royalsociety.org/topics-policy/projects/privacy-enhancing-technologies/
https://royalsociety.org/topics-policy/projects/privacy-enhancing-technologies/
https://royalsociety.org/topics-policy/projects/digital-technology-and-the-planet/
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AREA FOR ACTION: ENHANCE ACCESS TO ESSENTIAL AI INFRASTRUCTURES 

AND TOOLS

RECOMMENDATION 2

Funders and AI developers should prioritise accessibility and usability 
of AI tools developed for scientific research

17 Cartwright H. 2023 Interpretability: Should – and can – we understand the reasoning of machine-learning systems?  
In: OECD (ed.) Artificial Intelligence in Science. OECD. (https://doi.org/10.1787/a8d820bd-en) 

18 UKRI. Trustworthy Autonomous Systems Hub. Developing machine learning models with codesign: how everyone can 
shape the future of AI. See: https://tas.ac.uk/developing-machine-learning-models-with-codesign-how-everyone-can-
shape-the-future-of-ai/ (accessed 7 March 2023)

Access to AI does not guarantee its meaningful 
and responsible use. Complex and high-
performance AI tools and methods can be 
challenging for researchers from non-AI 
backgrounds to adopt and utilise effectively17. 
Similarly, new skills are needed across the 
AI lifecycle, such as data scientists who 
understand the importance of metadata and 
data curation, or engineers who are familiar with 
GPU programming for image-based processing.  

Taking steps to improve the usability of AI-
based tools (eg software applications, libraries, 
APIs, or general AI systems) should therefore 
involve a combination of mechanisms that 
make AI understandable for non-AI experts 
and build their capacity to use AI responsibly. 
For example, training should ensure that every 
scientist is able to recognise when they require 
specialised data or programming expertise in 
their teams, or when the use of complex and 
opaque AI techniques could undermine the 
integrity and quality of results. 

Improving usability can also enhance the role 
of non-AI scientists as co-designers18 – as 
opposed to passive users – who can ensure 
AI tools meet the needs of the scientific 
community. Creating conditions for co-
design requires bridging disciplinary siloes 
between AI and domain experts through the 
development of shared languages, modes 
of working, and tools.

https://tas.ac.uk/developing-machine-learning-models-with-codesign-how-everyone-can-shape-the-future-of-ai/
https://tas.ac.uk/developing-machine-learning-models-with-codesign-how-everyone-can-shape-the-future-of-ai/
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Actions to enhance the usability of AI tools 
may include:
1. Research institutions and training centres 

establishing AI literacy curriculums across 
scientific fields to build researchers’ 
capacity to understand the opportunities, 
limitations, and adequacy of AI-based tools 
within their fields and research contexts.

2. Research institutions and training centres 
establishing comprehensive data literacy 
curriculums tailored to the specific needs 
of AI applications in scientific research. 
This involves building capacity for data 
management, curation, and stewardship, 
as well as implementation of data principles 
such as FAIR (Findable, Accessible, 
Interoperable, and Reusable) and CARE 
(Collective benefit, Authority to control, 
Responsibility, and Ethics)19. 

19 Global Indigenous Data Alliance. Care Principles for Indigenous Data Governance. See https://www.gida-global.org/
care (accessed 21 December 2023)

20 Szymanski M, Verbert K, Vanden Abeele V. 2022. Designing and evaluating explainable AI for non-AI experts: 
challenges and opportunities. In Proceedings of the 16th ACM Conference on Recommender Systems  
(https://doi.org/10.1145/3523227.3547427) 

21 Korot E et al. 2021 Code-free deep learning for multi-modality medical image classification. Nat Mach Intell. 3, 
288–298. (https://doi.org/10.1038/s42256-021-00305-2) 

22 UKRI. Get Support For Your Project: If your research spans different disciplines. See: https://www.ukri.org/apply-for-
funding/how-to-apply/preparing-to-make-a-funding-application/if-your-research-spans-different-disciplines/  
(accessed 13 December 2023)

3. Research funders and AI developers 
investing in strategies that improve 
understanding and usability of AI for  
non-AI experts, with a focus on complex  
and opaque models20. This can include 
further research on domain-specific 
explainable AI (XAI) or accessible AI 
tools that enhance access in resource-
constrained research environments21. 

4. Research institutions, research funders, 
and scientific journals implementing 
mechanisms to facilitate knowledge 
translation across domains and meaningful 
collaboration across disciplines. This 
requires a combination of cross-discipline 
training, mentorship, publication outlets 
and funding (eg through bodies such 
as the UKRI’s Cross-Council Remit 
Agreement that governs interdisciplinary 
research proposals)22.

https://doi.org/10.1145/3523227.3547427
https://www.ukri.org/apply-for-funding/how-to-apply/preparing-to-make-a-funding-application/if-your-research-spans-different-disciplines/
https://www.ukri.org/apply-for-funding/how-to-apply/preparing-to-make-a-funding-application/if-your-research-spans-different-disciplines/
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AREA FOR ACTION: BUILD TRUST IN THE INTEGRITY AND QUALITY OF AI-BASED 

SCIENTIFIC OUTPUTS

RECOMMENDATION 3

Research funders and scientific communities should ensure that 
AI-based research meets open science principles and practices to 
facilitate AI’s benefits in science.

23 Haibe-Kains B et al. 2020 Transparency and reproducibility in artificial intelligence. Nature. 586, E14–E16.  
(https://doi.org/10.1038/s41586-020-2766-y)

24 Kapoor S and Narayanan A. 2023 Leakage and the reproducibility crisis in machine-learning-based science. Patterns. 
4(9) (https://doi.org/10.1016/j.patter.2023.100804)

25 Pineau, J, et al. 2021. Improving reproducibility in machine learning research (a report from the Neurips 2019 
Reproducibility program).” Journal of Machine Learning Research 22.164. 

26 Bommasani et al. 2021. On the opportunities and risks of foundation models. See: https://crfm.stanford.edu/assets/
report.pdf (accessed 21 March 2024)

27 UK Parliament, Reproducibility and Research Integrity – Report Summary See: https://publications.parliament.uk/pa/
cm5803/cmselect/cmsctech/101/summary.html (accessed 7 February 2024)

28 Sambasivan, N, et al 2021. “Everyone wants to do the model work, not the data work”: Data Cascades in High-Stakes 
AI. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems.

29 UNESCO Recommendation on Open Science. 2021. See: https://www.unesco.org/en/legal-affairs/recommendation-
open-science  (accessed 6 February 2024)

30 Solaiman, I. 2023 The gradient of generative AI release: Methods and considerations. In Proceedings of the 
2023 ACM Conference on Fairness, Accountability, and Transparency (pp. 111-122). (https://doi.org/10.48550/
arXiv.2302.04844)

A growing body of irreproducible AI and 
machine learning (ML)-based studies are 
raising concerns regarding the soundness 
of AI-based discoveries23,24. However, 
scientists are facing challenges to improve 
the reproducibility of their AI-based work. 
These include insufficient documentation 
released around methods, code, data, or 
computational environments25; limited access 
to computing to validate complex ML models26; 
and limited rewards for the implementation 
of open science practices27. This poses risks 
not only to science, but also to society, if the 
deployment of unreliable or untrustworthy  
AI-based outputs leads to harmful outcomes28.

To address these challenges, AI in science can 
benefit from following open science principles 
and practices. For example, the UNESCO 
Recommendation on Open Science29 offers 
relevant guidelines to improve scientific rigour, 
while noting that there is not a one-size-fits-all 
approach to practising openness across sectors 
and regions. This aligns well with the growing 
tendency towards adopting ‘gradual’ open 
models that pair the open release of models 
and data with the implementation of detailed 
guidance and guardrails to credible risks30. 

Open science principles can also contribute 
towards more equitable access to the 
benefits of AI and to building the capacity 
of a broader range of experts to contribute 
to its applications for science. This includes 
underrepresented and under-resourced 
scholars, data owners, or non-scientist publics. 

https://crfm.stanford.edu/assets/report.pdf
https://crfm.stanford.edu/assets/report.pdf
https://publications.parliament.uk/pa/cm5803/cmselect/cmsctech/101/summary.html
https://publications.parliament.uk/pa/cm5803/cmselect/cmsctech/101/summary.html
https://www.unesco.org/en/legal-affairs/recommendation-open-science
https://www.unesco.org/en/legal-affairs/recommendation-open-science
https://doi.org/10.48550/arXiv.2302.04844
https://doi.org/10.48550/arXiv.2302.04844
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Further work is needed to understand the 
interactions between open science and AI for 
science, as well as how to minimise safety and 
security risks stemming from the open release 
of models and data.

Actions to promote the adoption of open 
science in AI-based science may include:
1. Research funders and research institutions 

incentivising the adoption of open science 
principles and practices to improve 
reproducibility of AI-based research. For 
example, by allocating funds to open 
science and AI training, requesting the use of 
reproducibility checklists31 and data sharing 
protocols as part of grant applications, or by 
supporting the development of community 
and field-specific reproducibility standards 
(eg TRIPOD-AI32).

2. Research institutions and journals rewarding 
and recognising open science practices 
in career progression opportunities. For 
example, by promoting the dissemination 
of failed results, accepting pre-registration 
and registered reports as outputs, or 
recognising the release of datasets and 
documentation as relevant publications 
for career progression.

31 McGill School of Computer Science. The Machine Learning Reproducibility Checklist v2.0.  
See: https://www.cs.mcgill.ca/~jpineau/ReproducibilityChecklist.pdf (accessed 21 December 2023).

32  Collins G et al. 2021 Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) 
for diagnostic and prognostic prediction model studies based on artificial intelligence. BMJ open, 11(7), e048008.  
(https://doi.org/10.1136/bmjopen-2020-048008)   

3. Research funders, research institutions and 
industry actors incentivising international 
collaboration by investing in open science 
infrastructures, tools, and practices. For 
example, by investing in open repositories 
that enable the sharing of datasets, 
software versions, and workflows, or by 
supporting the development of context-
aware documentation that enables the local 
adaptation of AI models across research 
environments. The latter may also contribute 
towards the inclusion of underrepresented 
research communities and scientists 
working in low-resource contexts. 

4. Relevant policy makers considering 
ways of deterring the development of 
closed ecosystems for AI in science by, 
for example, mandating the responsible 
release of benchmarks, training data, 
and methodologies used in research led 
by industry. 

https://www.cs.mcgill.ca/~jpineau/ReproducibilityChecklist.pdf
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AREA FOR ACTION: ENSURE SAFE AND ETHICAL USE OF AI IN SCIENTIFIC RESEARCH

RECOMMENDATION 4

Scientific communities should build the capacity to oversee AI systems 
used in science and ensure their ethical use for the public good 

33  Arora, A, Barrett, M, Lee, E, Oborn, E and Prince, K 2023 Risk and the future of AI: Algorithmic bias, data colonialism, 
and marginalization. Information and Organization, 33. (https://doi.org/10.1016/j.infoandorg.2023.100478)

34  Verde, L., Marulli, F. and Marrone, S., 2021. Exploring the impact of data poisoning attacks on machine learning model 
reliability. Procedia Computer Science, 192. 2624-2632. (https://doi.org/10.1016/j.procs.2021.09.032)

35  Truhn D, Reis-Filho J.S. & Kather J.N. 2023 Large language models should be used as scientific reasoning engines, 
not knowledge databases. Nat Med 29, 2983–2984. (https://doi.org/10.1038/s41591-023-02594-z)

36 The Royal Society. 2024 Insights from the Royal Society & Humane Intelligence red-teaming exercise on AI-generated 
scientific disinformation. See: https://royalsociety.org/news-resources/projects/online-information-environment/ 
(accessed 7 May 2024) 

37  Kazim, E and Koshiyama, A.S 2021 A high-level overview of AI ethics. Patterns, 2. (https://doi.org/ 10.1016/j.patter.2021.100314)

38 Wang H et al. 2023 Scientific discovery in the age of artificial intelligence. Nature, 620. 47-60. (https://doi.org/10.1038/
s41586-023-06221-2)

39 Solaiman, I. 2023 The gradient of generative AI release: Methods and considerations. In Proceedings of the 2023 ACM 
Conference on Fairness, Accountability, and Transparency (pp. 111-122). (https://doi.org/10.48550/arXiv.2302.04844)

40  Vincent J. 2023 OpenAI co-founder on company’s past approach to openly sharing research: ‘We were wrong’.  
The Verge. See https://www.theverge.com/2023/3/15/23640180/openai-gpt-4-launch-closed-research-ilya-sutskever-
interview (accessed 21 December 2023).

41  Brennan, J. 2023. AI assurance? Assessing and mitigating risks across the AI lifecycle. Ada Lovelace Institute.  
See https://www.adalovelaceinstitute.org/report/risks-ai-systems/  (accessed 30 September 2023)

42 The Royal Society. 2023 Science in the metaverse: policy implicatioins of immersive technology.  
See https://royalsociety.org/news-resources/publications/2023/science-in-the-metaverse/

The application of AI across scientific domains 
requires careful consideration of potential risks 
and misuse cases. These can include the impact 
of data bias33, data poisoning34, the spread of 
scientific misinformation35,36, and the malicious 
repurposing of AI models37. In addition to this, 
the resource-intensive nature of AI (eg in terms 
of energy, data, and human labour) raises ethical 
questions regarding the extent to which AI used 
by scientists can inadvertently contribute to 
environmental and societal harms.

Ethical concerns are compounded by the 
uncertainty surrounding AI risks. As of late 
2023, public debates regarding AI safety had 
not conclusively defined the role of scientists 
in monitoring and mitigating risks within their 
respective fields. Furthermore, varying levels of 
technical AI expertise among domain experts,  
 
 

and the lack of standardised methods for 
conducting ethics impact assessments, limit 
the ability of scientists to provide effective 
oversight38. Other factors include the limited 
transparency of commercial models, the opaque 
nature of ML-systems, and how the misuse of 
open science practices could heighten safety 
and security risks39,40. 

As AI is further integrated into science, AI 
assurance mechanisms41 are needed to maintain 
public trust in AI and ensure responsible 
scientific advancement that benefits humanity. 
Collaboration between AI experts, domain 
experts and researchers from humanities and 
science, technology, engineering, the arts, and 
mathematics (STEAM) disciplines can improve 
scientists’ ability to oversee AI systems and 
anticipate harms42. 

https://doi.org/10.48550/arXiv.2302.04844
https://www.theverge.com/2023/3/15/23640180/openai-gpt-4-launch-closed-research-ilya-sutskever-interview
https://www.theverge.com/2023/3/15/23640180/openai-gpt-4-launch-closed-research-ilya-sutskever-interview
https://www.adalovelaceinstitute.org/report/risks-ai-systems/
https://royalsociety.org/news-resources/publications/2023/science-in-the-metaverse/
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Similarly, engaging with communities 
represented in or absent from AI training 
datasets, can improve the current 
understanding of possible risks and harms 
behind AI-based research projects.

Actions to support the ethical application of 
AI in science can include:
1. Research funders and institutions investing 

in work that operationalises and establishes 
domain-specific taxonomies43 of AI risks 
in science, particularly sensitive fields (eg 
chemical and biological research).

2. Research funders, research institutions, 
industry actors, and relevant scientific 
communities embracing widely available 
ethical frameworks for AI, as reflected in the 
UNESCO Recommendation on the Ethics 
of Artificial Intelligence44, or the OECD’s 
Ethical Guidelines for Artificial Intelligence45, 
and implementing practices that blend 
open science with safeguards against 
potential risks.

43  Weidinger L, et al. 2022 Taxonomy of risks posed by language models. In Proceedings of the 2022 ACM Conference 
on Fairness, Accountability, and Transparency. 214-229. (https://doi.org/10.1145/3531146.3533088)

44  UNESCO. 2022. Recommendation on the ethics of artificial intelligence. See: https://www.unesco.org/en/artificial-
intelligence/recommendation-ethics (accessed 5 March 2024)

45  OECD. Ethical guidelines for artificial intelligence. See: https://oecd.ai/en/catalogue/tools/ethical-guidelines-for-
artificial-intelligence (accessed 5 March 2024)

3. Funders, research institutions and training 
centres providing AI ethics training and 
building the capacity of scientists to conduct 
foresight activities (eg horizon scanning), 
pre-deployment testing (eg red teaming), 
or ethical impact assessments of AI models 
to identify relevant risks and guardrails 
associated with their field.

4. Research funders, research institutions, and 
training centres supporting the development 
of interdisciplinary and participatory 
approaches to safety auditing, ensuring the 
involvement of AI and non-AI scientists, and 
affected communities in the evaluation of AI 
applications for scientific research.

https://doi.org/10.1145/3531146.3533088
https://www.unesco.org/en/artificial-intelligence/recommendation-ethics
https://www.unesco.org/en/artificial-intelligence/recommendation-ethics
https://oecd.ai/en/catalogue/tools/ethical-guidelines-for-artificial-intelligence
https://oecd.ai/en/catalogue/tools/ethical-guidelines-for-artificial-intelligence
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Introduction

Scope of the report 
Science in the age of AI explores how AI 
is transforming the nature and methods of 
scientific research. It focuses on the impact 
of deep learning methods and generative 
AI applications and explores cross-cutting 
considerations around research integrity, 
skills, and ethics. While AI is transforming a 
wide range of fields – including the social 
sciences and humanities – this report 
provides examples focused on physical 
and biological sciences. 

The report addresses following questions:
• How are AI-driven technologies 

transforming the methods and nature 
of scientific research?

• What are the opportunities, limitations, 
and risks of these technologies for 
scientific research?

• How can relevant stakeholders 
(governments, universities, industry, research 
funders, etc) best support the development, 
adoption, and uses of AI-driven technologies 
in scientific research?

Each chapter provides evidence gathered 
from interviews, roundtables, workshops, and 
commissioned research undertaken for this 
report to answer these questions. The findings 
are presented as follows: 

• Chapter 1 provides a descriptive review of 
how recent developments in AI (in Machine 
Learning (ML), deep neural networks, and 
natural language processing in particular) are 
changing methods, processes, and practices 
in scientific research.

• Chapter 2 details key challenges for 
research integrity in AI-based research. 
It tackles issues around transparency of 
AI models and datasets, explainability 
and interpretability, and barriers to verifying 
the reproducibility of results. 

• Chapter 3 addresses interdisciplinary 
collaboration and emerging research skills 
in AI-driven scientific research. It examines 
challenges such as siloed academic 
cultures and data infrastructures, explores 
opportunities for collaboration across fields, 
and characterises the need for data, AI, and 
ethics upskilling and training programmes. 

• Chapter 4 addresses the growing role of 
the private sector in AI-based research. It 
considers the opportunities and challenges 
related to the private sector’s impact on the 
public sector, as well as examples of cross-
sector collaboration.

• Chapter 5 addresses research ethics and 
safety in AI-based research. It highlights the 
need for oversight to prevent downstream 
harms related to ethical challenges, safety, 
and security risks. Examples include data 
bias, hallucinations, or the repurposing of 
datasets and models with malicious intent.
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The report also includes case studies on 
the application of AI for climate science, 
material science, and rare disease 
diagnosis. These cases also explore 
challenges related to researchers’ access 
to data (Case study 1), the implications of 
lab automation (Case study 2), and the 
emerging research ethics considerations in 
applications of AI in science (Case study 3). 

Target audiences
The following audiences should find this 
report useful:
• Scientists and research funders navigating 

the changing role of AI in science. 
This report offers an overview of the 
opportunities and challenges associated 
with the integration of increasingly complex 
techniques in scientific research.

• AI experts and developers. This report 
presents a case for further interdisciplinary 
collaboration with scientific domain 
experts and for strengthening cross-sector 
collaboration.

• Policy makers and regulators involved in 
shaping AI and data strategies. Evidence 
gathered in this report can contribute to 
strategies that promote responsible AI 
development, address ethical concerns, 
and support scientific progress.

• General public seeking to understand future 
directions and applications of AI. This report 
contributes towards informing the public 
regarding opportunities and challenges 
associated with AI adoption, as well as the 
broader societal implications of advancing 
this technology.

Readers need not have a technical 
background on AI to read this report. 

46  The Alan Turing Institute. Defining data science and AI. See: https://www.turing.ac.uk/news/data-science-and-ai-
glossary (accessed 1 March 2024)

Glossary of key terms
This report draws on concepts from data 
science and AI fields46. Included here is an 
overview of key terms used throughout. 

Artificial intelligence (AI): The development 
and study of machines capable of performing 
tasks that conventionally required human 
cognitive abilities. It encompasses various 
aspects of intelligence, such as reasoning, 
decision-making, learning, communication, 
problem-solving, and physical movement. 
AI finds widespread application in everyday 
technology such as virtual assistants, 
search engines, navigation systems, and 
online banking.

Artificial neural networks (ANNs): Artificial 
intelligence systems inspired by the 
structure of biological brains, consisting of 
interconnected computational units (neurons) 
capable of passing data between layers. 
Today, they excel in tasks such as face 
and voice recognition, with multiple layers 
contributing to problem-solving capabilities. 
See also ‘deep learning’.

Deep learning (DL): A form of machine 
learning utilising computational structures 
known as ‘artificial neural networks’ to 
automatically recognise patterns in data 
and produce relevant outputs. Inspired 
by biological brains, deep learning model 
are proficient at complex tasks such as image 
and speech recognition, powering applications 
like voice assistants and autonomous vehicles. 
See ‘Artificial neural networks’.

Foundation model: A machine learning 
model trained on extensive data, adaptable 
for diverse applications. Common examples 
include large language models, serving as the 
basis for various AI applications like chatbots.

https://www.turing.ac.uk/news/data-science-and-ai-glossary
https://www.turing.ac.uk/news/data-science-and-ai-glossary
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Generative AI: AI systems generating new 
text, images, audio, or video in response to 
user input using machine learning techniques. 
These systems, often employing Generative 
adversarial networks (GANs), create 
outputs closely resembling human-created 
media, resulting in outputs that are often 
indistinguishable from human-created media. 
See ‘Generative adversarial networks’. 

General adversarial networks (GANs): 
A machine learning technique that produces 
realistic synthetic data, like deepfake images, 
indistinguishable from its training data. It 
consists of a generator and a discriminator. 
The generator creates fake data, while the 
discriminator evaluates it against real data, 
helping the generator improve until the 
discriminator can’t differentiate between 
real and fake.

Human-in-the-loop (HITL): A hybrid system 
comprising of human and artificial intelligence 
that allows for human intervention, such 
as training or fine-tuning the algorithm, to 
enhance the systems output. Combining 
the strengths of both human judgment and 
machine capabilities can make up for the 
limitations of both.

Large language models (LLM): Foundation 
models trained on extensive textual data to 
perform language-related tasks, including 
chatbots and text generation. They are part 
of a broader field of research called natural 
language processing, and are typically much 
simpler in design than smaller, more traditional 
language models.

47  The Royal Society. 2019 Protecting privacy in practice. See https://royalsociety.org/topics-policy/projects/privacy-
enhancing-technologies/ (accessed 1 March 2024).

48  Ibid.

Machine learning (ML): A field of artificial 
intelligence involving algorithms that learn 
patterns from data and apply these findings 
to make predictions or offer useful outputs. 
It enables tasks like language translation, 
medical diagnosis, and robotics navigation 
by analysing sample data to improve 
performance over time. 

Privacy-enhancing technologies (PETs): 
An umbrella term covering a broad range of 
technologies and approaches that can help 
mitigate data security and privacy risks47.

Synthetic data: Data that is modelled 
to represent the statistical properties of 
original data; new data values are created 
which, taken as a whole, preserve relevant 
statistical properties of the ‘real’ dataset48. 
This allows for training models without 
accessing real-world data.

https://royalsociety.org/topics-policy/projects/privacy-enhancing-technologies/
https://royalsociety.org/topics-policy/projects/privacy-enhancing-technologies/
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CHAPTER ONE

How artificial intelligence is 
transforming scientific research

43 Eyres A et al. 2024 LIFE: A metric for quantitatively mapping the impact of land-cover change on global extinctions. 
Cambridge Open Engage. (https://doi.org/10.33774/coe-2023-gpn4p-v4).

44 Paul, D, Sanap, G, Shenoy, S, Kalyane, D, Kalia, K, Tekade, R. K. 2021 Artificial intelligence in drug discovery and 
development. Drug discovery today, 26. 80–93. (https://doi.org/10.1016/j.drudis.2020.10.010)  

45 Merchant, A, Batzner, S, Schoenholz, SS, Aykol, M, Cheon, G, Cubuk, ED. 2023 Scaling deep learning for materials 
discovery. Nature, 624. 80–85. (https://doi.org/10.1038/s41586-023-06735-9) 

46 Berman B, Chubb J, and Williams K, 2024. The use of artificial intelligence in science, technology, engineering,  
and medicine. The Royal Society. https://royalsociety.org/news-resources/projects/science-in-the-age-of-ai/  
(accessed 7 May 2024)

47 CERN. The Large Hadron Collider. See https://home.cern/science/accelerators/large-hadron-collider  
(accessed 22 April 2024)

The large-scale data analysis and pattern 
recognition capabilities of artificial intelligence 
(AI) present significant opportunities for 
advancing scientific research and discovery. 
New developments in machine learning, in 
particular, are enabling researchers to map 
deforestation down to an individual tree43; 
pharmaceutical companies to develop new 
therapies44; and technology companies to 
discover new materials45. These developments 
present novel opportunities and challenges to 
the nature and method of scientific investigation.

Drawing on insights from roundtables, 
interviews, and commissioned research, 
this chapter outlines how AI is changing 
the scientific endeavour. 

AI in science: an overview
A commissioned analysis of the use of AI 
in science (based on published academic 
literature and focused on breadth, rather 
than depth of techniques) shows that 
applications of AI are found across all STEM 
fields46. There is a concentration in certain fields 
such as medicine; materials science; robotics; 
genetics; and, unsurprisingly, computer science. 
The physical sciences and medicine appear 
to dominate when it comes to the use of AI-
related technologies. The most prominent AI 
techniques across STEM fields include artificial 
neural networks (ANNs); machine learning (ML) 
(including deep learning (DL)); natural language 
processing; and image recognition. 

In the physical sciences (eg, physics, 
chemistry, astronomy), AI is being applied 
as a method for extracting information from 
rapidly accumulating data streams, (eg data 
generated at the Large Hadron Collider47); 
to identify patterns in very large datasets; 
and for modelling physical experiments. In 
the health sciences (eg, medicine, dentistry, 
veterinary sciences), it is being employed 
as a technique to aid disease detection 
and prediction; to support clinical decision-
making; and to enhance surgery, training, and 
robotics. In the life sciences, it is being used 
to analyse data from sensors; to support crop 
and water management; and to predict the 
3D structures of proteins.

AI and methods of scientific research
Recent developments in AI suggest there may 
be transformational changes to the methods of 
scientific research. These changes centre on 
making existing tasks more efficient, altering 
processes to generate knowledge, or enabling 
new mechanisms of discovery. 

The following examples emerged in the  
research activities undertaken for this report.

“  We are really 
reliant on [machine 
learning] just 
to make [our 
experiments] work. 
It has become 
embedded 
into what we’re 
doing. If you took 
machine learning 
out of our pipeline, 
it would fall apart.”

  Royal Society 
roundtable participant

https://royalsociety.org/news-resources/projects/science-in-the-age-of-ai/


SCIENCE IN THE AGE OF AI 23

CHAPTER ONE

“  We have the 
capacity to 
record much 
more [data] than 
before. We live 
in a data deluge. 
So, the hope is 
that machine 
learning methods 
will help us make 
sense of that, 
and then drive 
genuine, scientific 
hypotheses.”

  Royal Society 
roundtable participant

1. Growing use of deep learning across fields
  The application of deep learning (DL) is 

transforming data analysis and knowledge 
generation. Its use to automatically extract 
and learn features from raw data, process 
extensive datasets and recognise patterns 
efficiently outperforms linear ML-based 
models48. DL has found applications in 
diverse fields including healthcare, aiding 
in disease detection and drug discovery, 
or climate science, assisting in modelling 
climate patterns and weather detection. A 
landmark example is the application of DL 
by Google DeepMind to develop AlphaFold, 
a protein-folding prediction system that 
solved a 50-year-old challenge in biology 
decades earlier than anticipated49. 
 
Developing accurate and useful DL-based 
models is challenging due to its black-box 
nature and variations in real-world problems 
and data. This limits their explanatory 
power and reliability as scientific tools50. 
(See Chapter 2).

48   Choudhary, A, Fox, G, Hey, T. 2023. Artificial intelligence for science: A deep learning revolution. World Scientific 
Publishing Co. Pte Ltd. (https://doi.org/10.1142/13123)

49   Google DeepMind. AlphaFold. See: https://deepmind.google/technologies/alphafold/ (accessed 5 March 2024) 

50  Sarker, I. H. 2021. Deep learning: a comprehensive overview on techniques, taxonomy, applications and research 
directions. SN Computer Science, 2. 420. (https://doi.org/10.1007/s42979-021-00815-1)

51  Healy, M. J. R. 1973. What Computers Can and Cannot Do. Proceedings of the Royal Society of London. Series B,  
Biological Sciences, 184(1077), 375–378. (https://doi.org/10.1098/rspb.1973.0056)

52  World Health Organization. 2024. Ethics and governance of artificial intelligence for health: guidance on large  
multi-modal models. See: https://www.who.int/publications/i/item/9789240084759 (accessed 5 March 2024)

2. Obtaining insights from unstructured data 
A major challenge for researchers is utilising 
unstructured data (data that does not follow 
a specific format or structure, making it 
more challenging to process, manage and 
use to find patterns). The ability to handle 
unstructured data makes DL effective for 
tasks that involve image recognition and 
natural language processing (NLP).  
 
In healthcare, for example, data can be 
detailed; multi-modal and fragmented51. 
It can include images, text assessments, 
or numerical values from assessments 
and readings. Data collectors across the 
healthcare system may record this data in 
different formats or with different software. 
Bringing this data together, and making 
sense of it, can help researchers make 
predictions and model potential health 
interventions. Similarly, generative AI 
models can contribute towards generating 
and converting data into different modes 
and standards, that are not limited to the 
type of data fed into the algorithm52.

 

https://deepmind.google/technologies/alphafold/
https://www.who.int/publications/i/item/9789240084759


24 SCIENCE IN THE AGE OF AI

CHAPTER ONE

Other techniques such as causal machine 
learning (methods to estimate cause 
and effect in data)53 can help process 
unstructured data by learning complex 
nonlinear relations between variables54,55. 
Platforms claiming to be able to gain 
insights from unstructured data include 
Benevolent AI56 (using unstructured data 
from biomedical literature) and Microsoft’s 
Project Alexandria57 (focused mainly on 
enterprise knowledge).

3. Large-scale, multi-faceted simulations
  The generative capability of AI tools to 

learn from existing content and generate 
predictions of new content, provides 
scientists with the opportunity to run accurate 
predictions.  The generation of simulations  
 
 
 

53  Kaddour J, Lynch A, Liu Q, Kusner M J, Silva R. 2022. Causal machine learning: A survey and open problems.  
arXiv preprint (https://doi.org/10.48550/arXiv.2206.15475) 

54  Sanchez P, Voisey J, Xia T, Watson H, O’Neil A, and Tsaftaris, S. 2022 Causal machine learning for healthcare  
and precision medicine. R. Soc open sci. 9: 220638 (https://doi.org/10.1098/rsos.220638)

55  Royal Society roundtable on large language models, July 2023.  

56  Benevolent AI. 2019 Extracting existing facts without requiring any training data or hand-crafted rules.  
See https://www.benevolent.com/news-and-media/blog-and-videos/extracting-existing-facts-without-requiring-any-
training-data-or-hand-crafted-rules/ (accessed 21 December 2023).

57  Rajput S, Winn J, Moneypenny N, Zaykov Y, and Tan C. 2021 Alexandria in Microsoft Viva Topics: from big data to big 
knowledge. 26 April 2021. See https://www.microsoft.com/en-us/research/blog/alexandria-in-microsoft-viva-topics-
from-big-data-to-big-knowledge/ (accessed 21 December 2023).

58 Jordon et al. 2023 Synthetic Data – what, why and how? See https://royalsociety.org/news-resources/projects/
privacy-enhancing-technologies/ (accessed 21 December 2023)  

59  The Royal Society. 2020 Digital technology and the planet: Harnessing computing to achieve net zero.  
See https://royalsociety.org/topics-policy/projects/digital-technology-and-the-planet/ (accessed 21 December 2023).

60 Jordon et al. 2023 Synthetic Data – what, why and how? See https://royalsociety.org/news-resources/projects/
privacy-enhancing-technologies/ (accessed 21 December 2023).

61  Zhang L, Han J, Wang H, Car R, Weinan E. 2018 Deep Potential Molecular Dynamics: A Scalable Model 
with the Accuracy of Quantum Mechanics. Phys Rev Lett. 2018 Apr 6;120(14):143001. (https://doi.org/10.1103/
PhysRevLett.120.143001. PMID: 29694129) 

62  The Royal Society. 2023 From privacy to partnership. See https://royalsociety.org/topics-policy/projects/privacy-
enhancing-technologies/ (accessed 21 December 2023).

63  Lin Z. 2023 Why and how to embrace AI such as ChatGPT in your academic life. R. Soc. Open Sci.10:  
230658 230658 (https://doi.org/10.1098/rsos.230658)

64 Alkaissi H, McFarlane SI. Artificial Hallucinations in ChatGPT: Implications in Scientific Writing. Cureus. 2023 Feb 
19;15(2):e35179. (https://doi: 10.7759/cureus.35179)

 
and synthetic data58 (artificially generated 
data) or digital twins59 (virtual representations  
of physical assets) are examples of how  
AI-based tools can be used to train 
systems60. For molecular research, this 
involves using deep neural networks that 
use data about how molecules interact to 
accurately simulate the behaviour at the 
atomic level 61. The use of synthetic data, 
especially privacy-preserving synthetic data, 
can also help mitigate the challenge of data 
bias and protect individuals’ privacy62.

4. Expediting information synthesis 
 Large language models (LLMs) and NLP 
techniques are increasingly being used 
to accelerate text-based tasks such as 
academic writing63, conducting literature 
reviews, or producing summaries64. 

https://www.benevolent.com/news-and-media/blog-and-videos/extracting-existing-facts-without-requiring-any-training-data-or-hand-crafted-rules/
https://www.benevolent.com/news-and-media/blog-and-videos/extracting-existing-facts-without-requiring-any-training-data-or-hand-crafted-rules/
https://www.microsoft.com/en-us/research/blog/alexandria-in-microsoft-viva-topics-from-big-data-to-big-knowledge/
https://www.microsoft.com/en-us/research/blog/alexandria-in-microsoft-viva-topics-from-big-data-to-big-knowledge/
https://royalsociety.org/news-resources/projects/privacy-enhancing-technologies/
https://royalsociety.org/news-resources/projects/privacy-enhancing-technologies/
https://royalsociety.org/topics-policy/projects/digital-technology-and-the-planet/
https://royalsociety.org/news-resources/projects/privacy-enhancing-technologies/
https://royalsociety.org/news-resources/projects/privacy-enhancing-technologies/
https://royalsociety.org/topics-policy/projects/privacy-enhancing-technologies/
https://royalsociety.org/topics-policy/projects/privacy-enhancing-technologies/
https://doi.org/10.1098/rsos.230658
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Examples of automated literature review 
tools include Semantic Scholar65, Elicit66, and 
Consensus67. It is also available on prominent 
platforms such as GPT4 and Gemini. 

  Beneficial use cases include using LLMs 
to improve the quality of academic writing, 
assist with translation, or emulate specific 
writing styles (eg producing lay summaries). 
Beyond academic texts, they can also be 
used to streamline administrative tasks and 
assist in drafting grant applications. These 
tools could also improve accessibility for 
researchers from diverse backgrounds (eg 
non-English speakers and neurodivergent 
individuals) who consume and produce 
academic content in multiple languages 
and formats68. 

  These tools also have limitations including 
the potential to exacerbate biases from 
the training data (eg bias towards positive 
results69, language biases70 or geographic 
bias71), inaccuracies and unreliable 
scientific inputs72. 

65  Semantic Scholar: AI-powered research tool. See https://www.semanticscholar.org/ (accessed 21 December 2023).

66  Elicit: The AI research assistant. See https://elicit.com/ (accessed 21 December 2023).

67  Consensus: AI search engine for research. See https://consensus.app/ (accessed 21 December 2023).

68  Royal Society and Department for Science, Innovation, and Technology workshop on horizon scanning AI safety risks 
across scientific disciplines, 2023.

69  Royal Society and Department for Science, Innovation and Technology workshop on horizon scanning AI safety risks 
across scientific disciplines, October 2023. See https://royalsociety.org/current-topics/ai-data/. (accessed 7 May 2024).

70  Barrot JS, 2023. Using ChatGPT for second language writing: Pitfalls and potentials. Assessing Writing, 57.100745.

71 Skopec M, Issa H, Reed J, Harris M. 2020. The role of geographic bias in knowledge diffusion: a systematic review 
and narrative synthesis. Research integrity and peer review, 5. 1-14. (https://doi.org/10.1186/s41073-019-0088-0.)

72  Sanderson K. 2023. GPT-4 is here: what scientists think. Nature, 615.773. 30 March 2023. See https://www.nature.
com/articles/d41586-023-00816-5.pdf (accessed 21 December 2023) 

73  Birhane A, Kasirzadeh A, Leslie D, Wachter S. 2023. Science in the age of large language models. Nature Reviews 
Physics, 1-4 (https://doi.org/10.1038/s42254-023-00581-4)

74  Bender E, Koller A. 2020 Climbing towards NLU: on meaning, form, and understanding in the age of data. 
In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics 5185–5198

75  Royal Society and Department for Science, Innovation, and Technology workshop on horizon scanning AI safety risks 
across scientific disciplines, 2023.

76  Royal Society roundtable on large language models, July 2023.

  As a writing tool they also have a limited 
ability to grasp nuanced value judgments, 
assist in scientific meaning-making73, or 
articulate the complexities of scientific 
research74. There are also concerns that 
the use of LLMs for academic writing risks 
diminishing creative and interdisciplinary 
aspects of scientific discovery75. Additionally, 
there are questions around the impact of 
LLMs on intellectual property (IP).

5. Addressing complex coding challenges
  Developing computational analysis software 

code has become an important aspect of the 
modern scientific endeavour. For example, 
LLMs – which are designed to analyse text 
inputs and generate responses that they 
determine are likely to be accurate – can 
be used for generating software code in 
various coding languages. This presents 
an opportunity for scientific researchers to 
convert code from one computer language to 
another, or from one application to another76. 

https://www.semanticscholar.org/
https://elicit.com/
https://consensus.app/
https://royalsociety.org/current-topics/ai-data/
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  Even if the output is not accurate on a first 
attempt, these models can be used as 
coding assistants to help identify coding 
mistakes, make suggestions, and save time. 
Prominent examples include Microsoft’s 
Copilot77; OpenAI’s GPT478; Meta’s Code 
Llama79; and Google DeepMind’s Gemini.80  

6. Task automation
  AI tools can automate a range of time 

and labour-intensive tasks within the 
scientific workflow.81 Automation can lead to 
productivity gains for scientists82 and unlock 
the potential to test diverse hypotheses 
beyond human capability. For example, in 
2023, Google DeepMind claimed two such 
examples: FunSearch83, and GNoME84.

  The use of robotic research assistants is also 
contributing to the automation of laboratory 
workflows (See Case Study 2). In 2009, a 
robot developed by Aberystwyth University 

77  GitHub. Copilot – Your AI pair programmer. See https://github.com/features/copilot (accessed 21 December 2023).

78  Open AI. GPT4. See https://openai.com/gpt-4 (accessed 21 December 2023).

79  Meta. 2023 Introducing Code Llama, a state-of-the-art large language model for coding. Meta. 24 August 2023.  
See https://ai.meta.com/blog/code-llama-large-language-model-coding/ (accessed 21 December 2023).

80 Google DeepMind. Gemini. See https://deepmind.google/technologies/gemini/#introduction (accessed 21 December 2023).

81  Xie, Y, Sattari, K, Zhang, C, & Lin, J. 2023 Toward autonomous laboratories: Convergence of artificial intelligence and 
experimental automation. Progress in Materials Science, 132. 101043. (https://doi.org/10.1016/j.pmatsci.2022.101043) 

82  OECD. 2023. Artificial Intelligence in Science: Challenges, Opportunities and the Future of Research, OECD 
Publishing, Paris (https://doi.org/10.1787/a8d820bd-en).

83  Fawzi A and Paredes B. 2023. FunSearch: Making new discoveries in mathematical sciences using Large Language 
Models. Google DeepMind. See https://deepmind.google/discover/blog/funsearch-making-new-discoveries-in-
mathematical-sciences-using-large-language-models/ (accessed 21 December 2023).

84 Merchant A and Cubuk E. 2023 Millions of new materials discovered with deep learning. Google DeepMind. See https://
deepmind.google/discover/blog/millions-of-new-materials-discovered-with-deep-learning/ (accessed 21 December 2023).

85  University of Cambridge. Robot scientist becomes first machine to discover new scientific knowledge.  
See: https://www.cam.ac.uk/research/news/robot-scientist-becomes-first-machine-to-discover-new-scientific-knowledge 
(accessed 3 March 2024)

86 Sparkes A et al. 2010. Towards Robot Scientists for autonomous scientific discovery. Autom Exp 2, 1  
(https://doi.org/10.1186/1759-4499-2-1) 

87 University of Cambridge. Artificially-intelligent Robot Scientist ‘Eve’ could boost search for new drugs. See: https://www.cam.
ac.uk/research/news/artificially-intelligent-robot-scientist-eve-could-boost-search-for-new-drugs (accessed 7 March 2024)

88 Lin Z. 2023 Why and how to embrace AI such as ChatGPT in your academic life. R Soc Open Sci. 2023 Aug 
23;10(8):230658 (https://doi.org/ 10.1098/rsos.230658.)

89  Royal Society and Department for Science, Innovation and Technology workshop on horizon scanning AI safety risks 
across scientific disciplines, October 2023. See https://royalsociety.org/current-topics/ai-data/. (accessed 7 May 2024)

became the first machine to independently 
discover new scientific knowledge85. The 
robot was programmed to independently 
design experiments, record and evaluate 
results, and develop new questions – 
automating the entire research workflow86. 
Building on this breakthrough, ‘robot 
scientists’ continue to be developed to speed 
up the discovery process, while reducing 
costs, uncertainty, and human error in labs87.

  As research becomes more automated, 
there are concerns that future generations 
of scientists may become de-skilled in 
core skills such as hypothesis generation, 
experimental design, and contextual 
interpretation88. Methodological 
transparency and understanding of cause-
effect relationships could also decline, 
and an overemphasis on computational 
techniques risks disengaging scientists 
who seek creative outlets in their work89. 

https://github.com/features/copilot
https://openai.com/index/gpt-4/
https://ai.meta.com/blog/code-llama-large-language-model-coding/
https://doi.org/10.1016/j.pmatsci.2022.101043
https://doi.org/10.1787/a8d820bd-en
https://deepmind.google/discover/blog/funsearch-making-new-discoveries-in-mathematical-sciences-using-large-language-models/
https://deepmind.google/discover/blog/funsearch-making-new-discoveries-in-mathematical-sciences-using-large-language-models/
https://deepmind.google/discover/blog/millions-of-new-materials-discovered-with-deep-learning/
https://deepmind.google/discover/blog/millions-of-new-materials-discovered-with-deep-learning/
https://www.cam.ac.uk/research/news/robot-scientist-becomes-first-machine-to-discover-new-scientific-knowledge
https://doi.org/10.1186/1759-4499-2-1
https://www.cam.ac.uk/research/news/artificially-intelligent-robot-scientist-eve-could-boost-search-for-new-drugs
https://www.cam.ac.uk/research/news/artificially-intelligent-robot-scientist-eve-could-boost-search-for-new-drugs
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AI and the nature of scientific research
Beyond the impact of AI on the methods 
of scientific research, there is a potentially 
transformative impact on the nature of the 
scientific endeavour itself. These impacts 
primarily relate to the prevalence of big data-
led research, reliance on computing power 
and new ways of organising skills and labour in 
the scientific process. 

Drawing on the activities undertaken for this 
report, the following six themes emerged as key 
impacts of AI on the nature of scientific research.

1. Computers and labour as foundational 
AI infrastructures

  An assemblage of digital infrastructure 
and human labour underpins major AI 
applications90. The digital infrastructure 
refers to devices which collect data, 
personal computers which they are 
analysed on, and supercomputers which 
power large-scale data analysis. The human 
labour refers to the act of data collection, 
cleansing, and labelling, as well as the act 
of design, testing, and implementation. 
The types of digital infrastructure required 
includes supercomputers (eg those 
included in HPC-UK91 and the EuroHPC 
JU92); privacy enhancing technologies;93 
and data storage facilities (eg data centres).

90 Penn J. 2024. Historical review on the role of disruptive technologies in transforming science and society.  
The Royal Society. See https://royalsociety.org/news-resources/projects/science-in-the-age-of-ai/ (accessed 7 May 2024)

91  HPC-UK. UK HPC Facilities. See https://www.hpc-uk.ac.uk/facilities/ (accessed 21 December 2023).

92 The European High Performance Computing Joint Undertaking. See https://eurohpc-ju.europa.eu/index_en  
(accessed 21 December 2023).

93 The Royal Society. Privacy Enhancing Technologies. See https://royalsociety.org/topics-policy/projects/privacy-
enhancing-technologies/ (accessed 21 December 2023).

94 Amazon Web Services. Cloud Computing Services. See https://aws.amazon.com/ (accessed 21 December 2023).

95 Oracle. Cloud Infrastructure. See https://www.oracle.com/cloud/ (accessed 21 December 2023).

96 The Royal Society. 2017 Machine Learning: The power and promise of computers that learn by example.  
See https://royalsociety.org/topics-policy/projects/machine-learning/ (accessed 21 December 2023).

97 The Royal Society. 2020 Digital technology and the planet: Harnessing computing to achieve net zero.  
See https://royalsociety.org/topics-policy/projects/digital-technology-and-the-planet/ (accessed 21 December 2023).

98 Royal Society and Department for Science, Innovation and Technology workshop on horizon scanning AI safety risks 
across scientific disciplines, October 2023. See https://royalsociety.org/current-topics/ai-data/. (accessed 7 May 2024)

Cloud-based solutions, which do not require 
users to own physical infrastructure (eg to 
store data) include Amazon Web Services94 
and Oracle Cloud Infrastructure.95 

2. Domination of big data centric research
  The ability to collect big data (large and 

heterogeneous forms of data that have been 
collected without strict experimental design96) 
and combine these with other datasets has 
presented clear and significant opportunities 
for the scientific endeavour. The value being 
gained from applying AI to these datasets 
has already provided countless examples 
of positive applications from mitigating the 
impact of COVID-19 to combating climate 
change (See Case Study 3)97. This is likely to 
continue to reshape the research endeavour 
to be more AI and big data-centric98. The 
ability to engage in data-centric research, 
however, remains dependent on access 
to computing infrastructure that enables 
processing of large heterogenous datasets.

  The domination of big data centric research 
also has implications for research in which 
only incomplete or small data is available. 
Without careful governance, it risks reducing 
research investment and support in priority 
areas (eg subjects or regions) where primary  
 data collection at that scale is limited, difficult 

https://royalsociety.org/news-resources/projects/science-in-the-age-of-ai/
https://www.hpc-uk.ac.uk/facilities/
https://eurohpc-ju.europa.eu/index_en
https://royalsociety.org/topics-policy/projects/privacy-enhancing-technologies/
https://royalsociety.org/topics-policy/projects/privacy-enhancing-technologies/
https://aws.amazon.com/
https://www.oracle.com/cloud/
https://royalsociety.org/topics-policy/projects/machine-learning/
https://royalsociety.org/topics-policy/projects/digital-technology-and-the-planet/
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or not desirable. It is also likely to increase 
attention on techniques such as data 
augmentation and the use of synthetic data. 
The case of rare disease research (See Case 
Study 1) illustrates applications of AI in small 
data research. 

3. Open vs closed science
  Open science, which seeks to open the 

entire research and publication process 
(including but not limited to open data; open 
protocols; open code; and transparent peer 
review), is a principle and practice advocated 
for by the Royal Society, and others99. It 
is also promoted by major technology 
companies including Meta and OpenAI, 
although this has been challenged as 
‘aspirational’ or, even, ‘marketing’ rather than 
a technical descriptor100. As well as providing 
transparency, open science approaches can 
enable replication of experiments, wider 
public scrutiny of research products101 and 
further the right of everyone to share in 
scientific advancement102. 

99   The Royal Society. Open Science. See https://royalsociety.org/journals/open-access/open-science/  
(accessed 21 December 2023).

100   Widder D, West S, Whittaker M. 2023 Open (for business): Big tech, concentrated power, and the political economy 
of Open AI. SSRN. (https://doi.org/10.2139/ssrn.4543807) 

101   The Royal Society. 2022 The online information environment. See https://royalsociety.org/topics-policy/projects/
online-information-environment/ (accessed 21 December 2023).

102   UNESCO Recommendation on Open Science. 2021. See: https://www.unesco.org/en/legal-affairs/recommendation-
open-science  (accessed 6 February 2024)

103   Penn J. 2024. Historical review on the role of disruptive technologies in transforming science and society.  
The Royal Society. See https://royalsociety.org/news-resources/projects/science-in-the-age-of-ai/ (accessed 7 May 2024)

104   UNESCO Recommendation on Open Science. 2021. See: https://www.unesco.org/en/legal-affairs/recommendation-
open-science  (accessed 6 February 2024)

105   UNESCO Recommendation on ethics of artificial intelligence. 2022. See: https://www.unesco.org/en/articles/
recommendation-ethics-artificial-intelligence (accessed 6 February 2024)

106   Vincent J. 2023 OpenAI co-founder on company’s past approach to openly sharing research: ‘We were wrong’.  
The Verge. 15 March 2023. See https://www.theverge.com/2023/3/15/23640180/openai-gpt-4-launch-closed-
research-ilya-sutskever-interview (accessed 21 December 2023) 

107   House of Lords. 2024 Large language models and generative AI. Report of Session 2023-24.  
See: https://publications.parliament.uk/pa/ld5804/ldselect/ldcomm/54/5402.htm (accessed 2 February 2024)

108   Solaiman, I. 2023 The gradient of generative AI release: Methods and considerations. In Proceedings of the 
2023 ACM Conference on Fairness, Accountability, and Transparency (pp. 111-122). (https://doi.org/10.48550/
arXiv.2302.04844)

  However, the increasing use of proprietary 
AI presents challenges for open science. 
Researchers are increasingly relying on 
tools developed and maintained by private 
companies (see Chapter 4), even though the 
inner workings may remain opaque103. This 
is exacerbated by the opacity of training 
data which underpins prominent AI tools. 
Poor transparency risks limiting the utility 
of AI tools for solving real world problems 
as policymakers and scientists may not 
consider AI-generated results as reliable for 
important decisions104. It also undermines 
efforts to detect and scrutinise negative 
impacts or discriminatory effects105. 

  A fully open approach that prompts the 
release of datasets and models without 
guardrails or guidance may not be desirable 
either, as datasets or models can be 
manipulated by bad actors106. Context-
specific and AI-compatible open science 
approaches are needed to boost oversight 
and transparency107,108. 

https://royalsociety.org/journals/open-access/open-science/
https://royalsociety.org/topics-policy/projects/online-information-environment/
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4. Challenging notions of transparency 
and explainability 

  The scientific method can be generally 
described as the act of creating a hypothesis, 
conducting an experiment, recording its 
outcome, and refining the original hypothesis 
according to the results. This concept dates 
back more than a thousand years ago to 
Hasan Ibn al-Haytham, who emphasised 
the need for experimental data and 
reproducibility of results.109 Underpinning 
this, and other approaches to scientific 
methodology is “the search for explanations 
as a fundamental aim of science”110. 

  This is being challenged by recent 
developments in AI due to the non-linear 
relationships which can be derived from 
big data and the general black-box nature 
of AI tools111,112. These discoveries could be 
transformational for society. If, however, 
researchers develop an overreliance113 on 
AI for the interpretation and analysis of 
results, they may be unable to explain how 
conclusions were reached or provide  
 
 
 
 
 
 
 
 

109   Al-Khalili J. 2009 The ‘first true scientist’. BBC News. 4 January 2009. See http://news.bbc.co.uk/1/hi/sci/
tech/7810846.stm (accessed 21 December 2023).

110   Maxwell N. 1972 A Critique of Popper’s Views on Scientific Method. Philosophy of Science, 39(2), 131-152. 
(doi:10.1086/288429) 

111   Succi S, Coveney P. 2019 Big data: The end of the scientific method? Phil. Trans. R. Soc. A. 377: 20180145.  
(https://doi.org/10.1098/rsta.2018.0145) 

112   The Royal Society. 2019 Explainable AI: the basics. See https://royalsociety.org/topics-policy/projects/explainable-ai/ 
(accessed 21 December 2023).

113   Buçinca Z, Malaya M, Gajos K. 2021 To Trust or to Think: Cognitive Forcing Functions Can Reduce Overreliance on 
AI in AI-assisted Decision-making. Proc. ACM Hum.-Comput. Interact. 5:188. (https://doi.org/10.1145/3449287) 

114   Royal Society and Department for Science, Innovation and Technology workshop on horizon scanning AI safety risks 
across scientific disciplines, October 2023. See https://royalsociety.org/current-topics/ai-data/. (accessed 7 May 2024)

115   The Royal Society roundtable on the role of interdisciplinarity in AI for scientific research, June 2023.

the information required to reproduce a 
study.114 This would not meet the threshold 
of how science is traditionally accepted 
to be undertaken as peers would 
struggle to confirm or falsify a hypothesis. 
(See Chapter 2 for further details on 
challenges AI poses for explainability 
and reproducibility).

5. Science as an interdisciplinary endeavour 
Successful application of AI in scientific 
research, and its translation to real-world 
value, requires interdisciplinary skills and 
understanding. Computer scientists who 
wish to apply AI to solve major scientific 
problems need to be able to evaluate AI 
models in other research fields (eg health, 
climate science). Similarly, non-computer 
scientists need to understand how to 
effectively use AI tools and techniques for 
their experiments. Integrating knowledge 
from various fields and knowledge systems 
can also lead to more accurate models and 
foster curiosity-driven research (beyond 
commercially-driven interests)115. 

http://news.bbc.co.uk/1/hi/sci/tech/7810846.stm
http://news.bbc.co.uk/1/hi/sci/tech/7810846.stm
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The UK’s eScience initiative (2001  – 2008)116,117  
stands out as an effort to cultivate 
interdisciplinary collaboration by fostering 
a culture where scientists and computer 
science experts work together. Ongoing 
initiatives like Alan Turing Institute118 and 
Arizona State University’s School of 
Sustainability119 also continue to champion 
interdisciplinary approaches. 

However, interdisciplinarity is stifled by 
siloed institutions and insufficient career 
progression opportunities. Interdisciplinarity 
need not be limited to natural sciences, with 
value to be gained from scientists working 
with researchers in the arts, humanities, 
and social sciences. An example of this 
includes the importance of artists in the 
user experience design of immersive 
environments120,121 (See chapter 3 for 
further details on interdisciplinarity in  
AI-based research).

116   Hey T, Trefethen A. 2002 The UK e-Science Core Programme and the Grid Hey, T., & Trefethen, A. E.  
International Conference on Computational Science (pp. 3-21). Berlin, Heidelberg: Springer Berlin Heidelberg 
(https://doi.org/10.1016/S0167-739X(02)00082-1)

117   Hey T. 2005. e-Science and open access. See https://www.researchgate.net/publication/28803295_E-Science_
and_Open_Access (accessed 7 May 2024)

118   The Alan Turing Institute. Research. See https://www.turing.ac.uk/research (accessed 21 December 2023).

119   Arizona State University - School of Sustainability. See https://schoolofsustainability.asu.edu/  
(accessed 21 December 2023).

120   The Royal Society. 2023 Science in the metaverse: policy implications of immersive technologies.  
See https://royalsociety.org/news-resources/publications/2023/science-in-the-metaverse/  
(accessed 21 December 2023).

121   Ibid.

122   Krenn M. et al. 2022. On scientific understanding with artificial intelligence. Nature Reviews Physics 4.  
(https://doi.org/10.1038/s42254-022-00518-3) 

123   Messeri L, Crockett MJ. 2024 Artificial intelligence and illusions of understanding in scientific research. Nature. 
Mar;627(8002):49-58. (https://doi.org/10.1038/s41586-024-07146-0.)

6. Blending human expertise with 
AI automation 
The turn to automation offers opportunities 
to combine human expertise with 
efficiencies enabled by AI. AI can be 
used to either complement the human 
scientist by assisting or augmenting human 
capability; or to develop autonomous 
mechanisms for discovery (See Figure 1)122. 
Across this spectrum, the human scientist 
remains essential for contextual scientific 
understanding. The growing use of AI tools 
also risks making scientists vulnerable to 
’illusions of understanding’ in which only 
a limited set of viewpoints and methods 
are represented in outputs123. There is a 
need to further understand “human-in-
the-loop” approaches that recognise AI as 
complementary to human judgment and the 
role of human intervention to ensure the 
quality of outputs.
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FIGURE 1

Reproduction of a visualisation of the three general roles of AI for scientific research as either 
a computational microscope, resource of human inspiration, or an agent of understanding124.

124   The diagram describes three possible ways in which AI can contribute to scientific understanding. The ‘computational microscope’ refers to 
the role of AI in providing information through advanced simulation and data representation that cannot be obtained through experimentation. 
‘Resource of inspiration’ refers to scenarios in which AI provides information that expands the scope of human imagination or creativity. The ‘agent 
of understanding’ illustrates a scenario in which autonomous AI systems can share insights with human experts by translating observations into new 
knowledge. As of yet, there is no evidence to suggest that computers can act as true agents of scientific understanding. See: Krenn M. et al. 2022. 
On Scientific Understanding with Artificial Intelligence.
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AI and access to high-quality data
Data is the foundation of AI systems. The 
expression and principle of ‘garbage in, 
garbage out’, which dates to the early days 
of computing125 and the writings of Charles 
Babbage FRS126, remain applicable today. 
Poor-quality data which is incomplete, incorrect, 
or unrepresentative, can result in misleading 
outcomes. Ensuring high-quality datasets to 
train AI systems involves addressing challenges 
such as trust, access, bias, availability, and 
interoperability across the data lifecycle.

Drawing upon the 2023 US-UK Scientific 
Forum on Researcher Access to Data, 
organised by the Royal Society and the 
US National Academy of Sciences127; and 
interviews, the following themes emerged 
as key challenges associated with the use 
of data for AI-based scientific research:

125  Mellin W. 1957 Work with new electronic ‘brains’ opens field for army math experts. The Hammond Times.

126  Babbage C. 1964. Passages from the life of a philosopher. Cambridge, UK: Cambridge University Press.

127   National Academy of Sciences. 2024 Toward a New Era of Data Sharing: Summary of the US-UK Scientific Forum  
on Researcher Access to Data. Washington, DC: The National Academies Press. https://doi.org/10.17226/27520.

128   Today, a typical PC or laptop comes with one terabyte storage. Petabytes are akin to the storage capacity of a 
thousand of these PCs and exabytes are akin to the storage capacity of a million.

129   National Academy of Sciences. 2024 Toward a New Era of Data Sharing: Summary of the US-UK Scientific Forum  
on Researcher Access to Data. Washington, DC: The National Academies Press. https://doi.org/10.17226/27520.

130   Event Horizon Telescope. See https://eventhorizontelescope.org/ (accessed 21 December 2023).

131   National Academy of Sciences. 2024 Toward a New Era of Data Sharing: Summary of the US-UK Scientific Forum  
on Researcher Access to Data. Washington, DC: The National Academies Press. https://doi.org/10.17226/27520.

132   SKAO. Portuguese prove SKA green energy system. See: https://www.skao.int/en/impact/440/portuguese-prove-
ska-green-energy-system (accessed 21 March 2024)

1. Volume and heterogeneity
Data collected for scientific experiments 
can be extremely large, measuring into 
terabytes, petabytes, and exabytes in size128. 
This volume challenge applies to diverse 
fields including genomics, high-energy 
physics, climate science, and astronomy. 

An example presented at the US-UK Scientific 
Forum129 is the Event Horizon Telescope 
(Georgia Institute of Technology) which took 
the first two photographs of black holes.130 
The project, which involved ten telescopes 
across the world, recorded one petabyte of 
data per night. The vast size of this type of 
data and its often heterogenous nature makes 
objectives such as interoperability difficult to 
achieve. This challenge calls for integrated 
and central repositories that provide long-
term stewardship and access for researchers, 
near real time dissemination and analysis, and 
solutions for the annotation of heterogeneous 
training data. For example, the National 
Oceanic and Atmospheric Administration are 
experimenting with a videogame solution 
called FathomVerse, asking players to identify 
broad categories of species they can see in 
video footage from exploration vessels131 The 
establishment of large data infrastructures 
requires further consideration of its 
maintenance and environmental impact 132.

“  Everybody wants 
the sparkly 
fountain, but 
very few people 
are thinking 
of the boring 
plumbing system 
underneath it.”

 Pete Buttigieg 
  Participant in the  
US-UK Scientific  
Forum on Researcher 
Access to Data

https://eventhorizontelescope.org/
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2. The role of data institutions
Data institutions (eg archives, statistical 
agencies, data repositories) can play an 
important role in facilitating researcher 
access to data. These institutions have 
a range of functions, including:

• Protecting sensitive data and granting 
access under restricted conditions.

• Combining or linking data from multiple 
sources and providing insights and 
other services back to those who have 
contributed data.

• Creating open datasets that anyone can 
access, use, and share to further a particular 
mission or cause.

• Acting as a gatekeeper for data held by 
other organisations.

• Developing and maintaining identifiers, 
standards, and other infrastructure for 
a sector or field, such as by registering 
identifiers or publishing open standards.

• Enabling people to take a more active role 
in stewarding data about themselves and 
their communities. 

133   National Academy of Sciences. 2024 Toward a New Era of Data Sharing: Summary of the US-UK Scientific Forum  
on Researcher Access to Data. Washington, DC: The National Academies Press. https://doi.org/10.17226/27520.

134   Data.gov. See https://data.gov/ (accessed 21 December 2023).

135   ICPSR. See https://www.icpsr.umich.edu/web/pages/index.html (accessed 21 December 2023).

136   Office for National Statistics. See https://www.ons.gov.uk/ (accessed 21 December 2023).

137   Leonelli S, Williamson H. 2022 Introduction: Towards Responsible Plant Data Linkage. In: Towards Responsible Plant 
Data Linkage: Data Challenges for Agricultural Research and Development. Springer International Publishing  
(https://doi.org/10.1007/978-3-031-13276-6_1).

138   National Academy of Sciences. 2024 Toward a New Era of Data Sharing: Summary of the US-UK Scientific Forum  
on Researcher Access to Data. Washington, DC: The National Academies Press. https://doi.org/10.17226/27520. 

Their fundamental role in maintaining 
the quality of data available for scientific 
research makes them akin to foundational 
infrastructure for AI tools. As such, they 
cost money and require maintenance.133  
Examples of data institutions include the 
US Government’s open data website,  
Data.gov134, the University of Michigan’s  
Inter-university Consortium for Political 
and Social Research (holding data on 
more than 19,000 social and behavioural 
science studies)135, and the UK’s Office for 
National Statistics136.

3. Sensitive data sharing
Limits to sharing sensitive data can block 
potential scientific breakthroughs. In the 
field of health care, for example, sharing 
and processing health data is complex 
due to its confidential and fragmented 
nature (both within institutions and across 
borders). While advancements in medical 
imaging, text, audio, and AI offer new 
possibilities for diagnosis and treatment, 
they also risk exposing sensitive patient 
information through imaging and metadata. 
Similarly, bad actors can also weaponise 
environmental data (eg rainfall, deforestation, 
or poaching data) to cause national security 
and environmental threats.  Researchers are 
calling for a definition of ‘sensitive data’, that 
considers how data subject to exploitation, 
misuse, and misinterpretation137 can cause 
societal and environmental harm138. 

https://data.gov/
https://www.icpsr.umich.edu/web/pages/index.html
https://www.ons.gov.uk/
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The use of trusted research environments 
and privacy enhancing technologies 
(including AI-based approaches such as 
federated machine learning), is enabling 
researchers to model problems without 
requiring data access, offering a potential 
technical solution to addressing concerns 
surrounding sensitive data. These are 
explained in detail in the Royal Society’s 
2019 report Protecting privacy in practice139 
and the 2023 report From privacy to 
partnership (which contains various 
use cases).140

139   The Royal Society. 2019 Protecting privacy in practice. See https://royalsociety.org/topics-policy/projects/privacy-
enhancing-technologies/ (accessed 21 December 2023).

140   Ibid.

141   The Royal Society. 2023 Creating resilient and trusted data systems. See https://royalsociety.org/topics-policy/
projects/data-for-emergencies/ (accessed 21 December 2023).

142   Charter of Trust. See: www.charteroftrust.com (accessed 21 December 2023) 

143   The Tidepool Big Data Donation Project. See: https://www.tidepool.org/bigdata (accessed 21 December 2023) 

Public trust and acceptability around the 
use of sensitive datasets relating to people 
(eg health information, demographics, 
location, etc.) is also essential. As set out in 
the Royal Society’s 2023 report, Creating 
resilient and trusted data systems, trust in 
data sharing requires clarity of purpose and 
transparency in data flows; as well as robust 
systems for security and privacy141. Private 
sector actors such as IBM, Microsoft and 
Siemens are addressing publics concerns 
by establishing communities of trust142. 
Other approaches include data governance 
frameworks that encourage the public to get 
involved in data-driven scientific projects 
while retaining control of their data (eg data 
donation drives143).

https://royalsociety.org/topics-policy/projects/privacy-enhancing-technologies/
https://royalsociety.org/topics-policy/projects/privacy-enhancing-technologies/
https://royalsociety.org/topics-policy/projects/data-for-emergencies/
https://royalsociety.org/topics-policy/projects/data-for-emergencies/
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AI and rare disease diagnosis

144   Department of Health and Social Care. 2021. The UK Rare Diseases Framework. See: https://www.gov.uk/government/
publications/uk-rare-diseases-framework/the-uk-rare-diseases-framework (accessed 30 September 2023).

145   Brasil S, Pascoal C, Francisco R, Dos Reis Ferreira V, Videira PA, Valadão AG. 2019 Artificial Intelligence (AI) in Rare 
Diseases: Is the Future Brighter? (https://doi.org/10:978 10.3390/genes10120978) 

146   Decherchi S, Pedrini E, Mordenti M, Cavalli A, Sangiorgi L. 2021 Opportunities and challenges for machine learning 
in rare diseases. Frontiers in Medicine, 8, 747612. (https://doi.org/10.3389/fmed.2021.747612) 

147   Banerjee J et al. 2023 Machine learning in rare disease. Nat Methods 20, 803–814. (https://doi.org/10.1038/s41592-
023-01886-z) 

148   Schaefer J, Lehne M, Schepers J, Prasser F, Thun S. 2020 The use of machine learning in rare diseases: a scoping 
review. Orphanet J Rare Dis.(https://doi.org/10.1186/s13023-020-01424-6)

149   Ibid.

150   Hsieh TC, Krawitz PM. 2023 Computational facial analysis for rare Mendelian disorders. American Journal of Medical 
Genetics Part C: Seminars in Medical Genetics. (https://doi.org/10.1002/ajmg.c.32061 

151   UK Biobank. See: https://www.ukbiobank.ac.uk/ (accessed 21 December 2023)

152   Turro E et al. 2020 Whole-genome sequencing of patients with rare diseases in a national health system. Nature 
583, 96–102 (https://doi.org/10.1038/s41586-020-2434-2 

A rare disease is a condition that affects 
fewer than 1 in 2,000 people and is often 
characterised by diverse, complex, and 
overlapping genetic manifestations144. Of the 
more than 7,000 rare diseases described 
worldwide, only 5% have a treatment145. A 
lack of understanding of underlying causes, 
fragmented patient data, and inadequate 
policies have contributed to making the 
diagnosis and treatment of rare diseases a 
public health challenge146.

The application of ML and generative AI 
techniques offers an opportunity to overcome 
some of these limitations. Rare disease 
researchers are using ML techniques to analyse 
high-dimensional datasets, such as high-
dimensional molecular data, to identify relevant 
biomarkers for known diseases or to identify 
new diseases147. The shift towards digitising 
health records is also creating opportunities 
to identify patients with rare diseases more 
promptly. Promising applications show potential 
to improve low diagnostic rates, treatments, 
and drug development processes148.

AI applications in the field of rare diseases

• Leveraging medical imaging for early 
diagnosis: Clinicians are using AI to find 
patterns in large datasets of patient 
information, including genetic data and clinical 
records, that may indicate the presence 
of a rare disease. ML is particularly useful 
to analyse multimodal data from different 
sources, including imaging data (eg, MRI, 
X-rays) that is becoming standard practice 
to understand disease manifestation149.  
For example, researchers at the Institute for 
Genomics Statistics and Bioinformatic at the 
University of Bonn are using deep neural 
networks (DNNs) and computational facial 
analysis to accelerate the diagnosis of  
ultra-rare and novel disorders150.  

• Improving capabilities for automated diagnosis: 
ML techniques can also be used to improve 
automated diagnostic support for clinicians. 
Applying ML to very large multi-modal health 
datasets, such as UK Biobank151, for example, is 
creating new possibilities to discover unknown 
and novel variants that can contribute to a 
molecular diagnosis of rare diseases152. 
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Similarly, ML is applied to determine 
whether data in health datasets can be 
used to identify patients who have not been 
previously tested for rare diseases and may 
have gone undiagnosed153,154.  

• Accelerate treatment and drug discovery: 
ML models, in particular generative AI, 
can be leveraged to accelerate the 
drug discovery process. Models screen 
molecular libraries to predict potential drug 
candidates and assess their effectiveness in 
treating specific rare diseases.155 This area 
tends to be dominated by private sector 
pharmaceutical companies such as Insilico 
Medicine, Recursion, or Healx156.

Data challenges for the application of AI for 
rare disease studies

• Limited data availability: Rare diseases 
affect a very small percentage of the global 
population. Relevant data – if available –  
is siloed, scattered, behind paywalls or 
commercially owned. This scarcity of data 
can make it difficult to train accurate and 
robust AI models157. This is exacerbated 
by a lack of channels to coordinate across 
labs and institutions to integrate and cross 
reference datasets. 

153   Cohen AM at al. Detecting rare diseases in electronic health records using machine learning and knowledge 
engineering: Case study of acute hepatic porphyria. PLoS. (https://doi.org/10.1371/journal.pone.0238277 )

154   Hersh WR, Cohen AM, Nguyen MM, Bensching KL, Deloughery TG. 2022 Clinical study applying machine learning 
to detect a rare disease: results and lessons learned. JAMIA Open, 5. (https://doi.org/10.1093/jamiaopen/ooac053)

155   Nag S, et al. 2022 Deep learning tools for advancing drug discovery and development. 3 Biotech. 12: 110. 

156   Steve Nouri. Generative AI Drugs Are Coming. See: https://www.forbes.com/sites/forbestechcouncil/2023/09/05/
generative-ai-drugs-are-coming/ (accessed September 30 2023)

157   Banerjee J et al. 2023 Machine learning in rare disease. Nat Methods 20, 803–814. (https://doi.org/10.1038/s41592-
023-01886-z)

158   Ibid.

• Biased and unrepresentative datasets: 
When rare disease data is available, it can be 
unrepresentative, creating issues which span 
from potential false positives or negatives 
to the underrepresentation of different age 
groups or ethnic minorities. Imbalanced 
data can lead to biased and ‘overfitted’ 
models that rely on patterns that are unique 
to the training data and thereby perform 
poorly on new datasets, with implications 
for transferability and generalisability of ML 
models across contexts.

• Heterogenous and noisy data: The use 
of ML is best suited for large and well-
curated datasets, while rare disease data 
can be heterogenous, incomplete, or 
incorrectly labelled (eg, misdiagnoses or 
incorrect labelling can be common in rare 
disease studies due to a limited or evolving 
understanding of a condition)158. Data related 
to rare diseases may come from various 
sources, including clinical records, genetic 
testing, and patient surveys. These data 
sources may have different formats, quality 
standards, and levels of detail. Integrating 
and harmonising such heterogeneous data 
can be a significant challenge. 
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• Cost and resource constraints: Collecting 
and annotating data for rare diseases 
can be expensive and time-consuming. 
Many healthcare organisations, including 
in resource-limited settings, may not 
have access to resources to invest build 
and maintain large-scale datasets for 
rare diseases159.

• Sensitive data: Medical data is highly 
sensitive, and there are strict data 
governance, management, and protection 
considerations. Anonymising and de-
identifying data is a common practice, 
however small samples in rare diseases 
increase the likelihood of identifying people 
through triangulation160. Sharing rare disease 
data while ensuring patient privacy and 
complying with regulations can be complex. 
More resources are needed to set up trusted 
and secure research environments that 
enable sensitive data sharing. 

Strategies to maximise the value of AI in rare 
disease research
Concerted efforts in data sharing, 
standardisation and data governance can pave 
the way for AI to make a significant impact on 
the study of rare diseases and improving the 
lives of those affected by these conditions.

• Independent and interoperable patient 
registries: Cross-institutional, international 
collaboration is needed to create large, 
centralised datasets suitable for ML-based 
research161. Data pooling initiatives are  
 

159   The Royal Society interviews with scientists and researchers. 2022 – 2023

160   The Royal Society interviews with scientists and researchers. 2022 – 2023

161   Boycott KM et al. 2017 International cooperation to enable the diagnosis of all rare genetic diseases. Am. J. Hum. 
Genet. 100, 695–705. (https://doi.org/10.1016/j.ajhg.2017.04.003)

162   Bellgard MI, Snelling T, McGree JM. 2019 RD-RAP: beyond rare disease patient registries, devising a comprehensive 
data and analytic framework. Orphanet J Rare Dis 14, 176. (https://doi.org/10.1186/s13023-019-1139-9)

163   Decherchi S, Pedrini E, Mordenti M, Cavalli A,  Sangiorgi,L. 2021 Opportunities and challenges for machine learning 
in rare diseases. Frontiers in Medicine, 8, 747612 (https://doi.org/10.3389/fmed.2021.747612)

164   Kokosi T, Harron K. 2022. Synthetic data in medical research. BMJ medicine, 1.  
(https://doi.org/10.1136/bmjmed-2022-000167)

165   Global Rare Disease Policy Network. See: https://www.rarediseasepolicy.org/ (accessed 21 March 2024)

 
also desirable, such as regional or global 
patient registries162 that can widen access 
relevant data, promote standardisation 
and interoperability of registries across 
institutions. For example, the European Rare 
Diseases Platform has released the ‘Set of 
common data elements for Rare Diseases 
Registration’. Establishing federated learning 
infrastructures, such as Gaia-X, can also 
facilitate sensitive data sharing163.

• Use AI for data augmentation: Generative 
techniques can be an effective way to address 
data scarcity, noise, or incompleteness164. For 
example, data augmentation strategies or the 
use of synthetic data can be used to populate 
incomplete datasets with artificial samples that 
increase diversity and representativeness of 
datasets (eg, address outliers and biases), 
minimising the need for personal data. 
Similarly, computer vision approaches can 
be used to improve the quality and fidelity 
of imaging data. Outstanding challenges 
include ensuring the reliability and adequate 
training of generative models.

• Establish multi-stakeholder cooperation 
networks: Rare disease researchers stressed 
the importance of collaboration to widen 
access to resources and align multiple 
stakeholder interests. The Asia-Pacific 
Economic Cooperation’s Rare Disease 
Network is a relevant model that brings 
together policymakers, academia, and industry 
to manage and harmonise data practices165.
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164   Echterhölter A, Schröter J, Sudmann A. 2021 How is Artificial Intelligence Changing Science? Research in the Era  
of Learning Algorithms. OSF Preprint (https://doi.org/10.33767/osf.io/28pnx)  

165   Sohn E. 2023 The reproducibility issues that haunt health-care AI. Nature. 9 January 2023.  
See https://www.nature.com/articles/d41586-023-00023-2 (accessed 21 December 2023)

166   Sambasivan N et al. 2021 “Everyone wants to do the model work, not the data work”: Data Cascades in  
High-Stakes AI. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems.  
(https://doi.org/10.1145/3411764.3445518)

167   Haibe-Kains B et al. 2020 Transparency and reproducibility in artificial intelligence. Nature. 586, E14–E16.  
(https://doi.org/10.1038/s41586-020-2766-y)

168   Royal Society and Department for Science, Innovation and Technology workshop on horizon scanning  
AI safety risks across scientific disciplines, October 2023. See https://royalsociety.org/current-topics/ai-data/ 
(accessed 7 May 2024)

169   Echterhölter A, Schröter J, Sudmann A. 2021 How is Artificial Intelligence Changing Science? Research in the Era  
of Learning Algorithms. OSF Preprint (https://doi.org/10.33767/osf.io/28pnx)  

170   Gundersen O, Gil Y and Aha D. 2018 On Reproducible AI: Towards Reproducible Research, Open Science, and 
Digital Scholarship in AI Publications. AI Magazine. 39: 56-68. (doi.org/10.1609/aimag.v39i3.2816)

171   Gunderson O, Coakley K, Kirkpatrick C, and Gil Y. 2022 Sources of irreproducibility in machine learning: A review. 
arXiv preprint. (doi.org/10.48550/arXiv.2204.07610) 

Trust in AI is essential for its responsible 
use in scientific research, particularly as 
scientists become increasingly reliant on these 
technologies164. This reliance hinges on an 
assumption that AI-based systems – as well 
as their analysis and outputs – can produce 
reliable, low-error, and trustworthy findings. 

However, the adoption of AI in scientific 
research has been coupled with challenges 
to rigour and scientific integrity. Core issues 
include a lack of understanding about how AI 
models work, insufficient documentation of 
experiments, and scientists lacking the required 
technical expertise for building, testing and 
finding errors in a model. A growing body of 
irreproducible studies using ML techniques are 
also raising concerns regarding the challenges 
to reproduce AI-based experiments and the 
reliability of AI-based results and discoveries165. 
Together, these issues pose risks not just to 
science, but also to society if the deployment 
of unreliable or untrustworthy AI technologies 
leads to harmful outcomes166.

Based on interviews and a roundtable on 
reproducibility conducted for this report, 
the following observations capture unique 
challenges AI poses for research integrity 
and trustworthiness. 

Reproducibility challenges in AI-based research 
Reproducibility refers to the ability of 
independent researchers to scrutinise the 
results of a research study, replicate them, and 
reproduce an experiment in future studies167. 

If researchers develop an overreliance on 
AI for data analysis, while remaining unable 
to explain how conclusions were reached 
and how to reproduce a study168, it will not 
meet thresholds for scrutiny and verification. 
Similarly, if results cannot be verified, they 
can contribute to inflated expectations, 
exaggerated claims of accuracy, or research 
outputs based on spurious correlations169. In 
the case of AI-based research, being able to 
reproduce a study not only involves replicating 
the method, but also being able to reproduce 
the code, data, and environmental conditions 
under which the experiment was conducted 
(eg computing, hardware, software)170,171.

“  It is hardly possible 
to imagine higher 
stakes than these 
for the world of 
science. The 
future existence 
and social role [of 
science] seem to 
hinge on the ability 
of researchers 
and scientific 
institutions to 
respond to the 
crisis, thus averting 
a complete loss of 
trust in scientific 
expertise by civil 
society.”

  Royal Society 
roundtable participant

https://www.nature.com/articles/d41586-023-00023-2
https://royalsociety.org/current-topics/ai-data/
https://doi.org/10.1609/aimag.v39i3.2816
https://doi.org/10.48550/arXiv.2204.07610
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Reproducibility failures do not only risk the 
validity of the individual study172, but can 
also affect research conducted for other 
studies, including those in other disciplines. 
For example, a study led by the Center for 
Statistics and Machine Learning at Princeton 
University showed how ‘data leakage’ in 
one study (a leading cause of errors in ML 
applications due to errors in training data or 
model features) may affect 294 papers across 
17 scientific fields, including high-stakes fields 
like medicine173. Furthermore, these types of 
issues are likely to be underreported due to 
factors such as unpublished data; insufficient 
documentation; absence of mechanisms to 
report failed experiments; and high variability 
across experimentation or research contexts174.  
 
Opacity and the black-box nature of 
machine learning
At the core of the reproducibility challenge 
are opaque ML-based models that not every 
scientist can explain, interpret, or understand. 
ML models are commonly referred to as 
‘black-box models’ (models that can produce 
useful information and outputs, even when 
researchers do not understand exactly how the 
system works). The opaque nature of models 
limits explainability and the ability of scientists 
to interpret how ML models arrive at specific 
results or conclusions175. 

172   McDermott M, Wang S, Marinsek N, Ranganath R, Foschini L, and Ghassemi M. 2021 Reproducibility in machine 
learning for health research: Still a way to go. Sci. Transl. Med. 13, eabb1655. (doi.org/10.1126/scitranslmed.abb1655)

173   Kapoor S and Narayanan A. 2023 Leakage and the reproducibility crisis in machine-learning-based 
science. Patterns. 4(9) (doi.org/10.1016/j.patter.2023.100804) 

174   Gundersen O, Gil Y and Aha D. 2018 On Reproducible AI: Towards Reproducible Research, Open Science, and 
Digital Scholarship in AI Publications. AI Magazine. 39: 56-68. (doi.org/10.1609/aimag.v39i3.2816)

175   Royal Society. Royal Society response on Reproducibility and Research Integrity. See: https://royalsociety.org/news-
resources/publications/2021/research-reproducibility/ (accessed 7 March 2024)

176   The Royal Society. 2019 Explainable AI: the basics. See https://royalsociety.org/topics-policy/projects/explainable-ai/ 
(accessed 21 December 2023).

177   Bommasani et al. 2021. On the opportunities and risks of foundation models. See: https://crfm.stanford.edu/assets/
report.pdf (accessed March 21 2024)

Explainable AI (See Box 1) can help researchers 
identify errors in data, models, or assumptions 
– mitigating challenges such as data bias 
– and ensure these systems produce high 
quality results which can be used for real-world 
implementation176 (See Box 1). This can become 
a significant challenge for scientists who 
integrate highly variable and complex models 
into their work, such as deep learning models, 
that are known to outperform less complex 
and more linear and transparent models.  
 
Opacity increases when models are developed 
in a commercial setting. For instance, most 
leading LLMs are developed by large 
technology companies like Google, Microsoft, 
Meta, and OpenAI. These models are 
proprietary systems, and as such, reveal limited 
information about their model architecture, 
training data, and the decision-making 
processes that would enhance understanding177. 

“ There may be a 
disproportionate 
problem with 
machine learning. 
We’ve come very 
far with the ability 
to handle huge 
amounts of data, 
using software that 
is very competent 
and well developed. 
But I think perhaps 
a lot of people using 
it don’t actually 
understand what 
they’re doing in 
a way that may 
not be so true for 
other areas. It’s 
a compounded 
problem, where 
there are many, 
many things you can 
get wrong. I wonder 
how many people 
really understand 
the software that 
they’re using.”

  Royal Society  
roundtable participant

https://doi.org/10.1126/scitranslmed.abb1655
https://doi.org/10.1016/j.patter.2023.100804
https://doi.org/10.1609/aimag.v39i3.2816
https://royalsociety.org/news-resources/publications/2021/research-reproducibility/
https://royalsociety.org/news-resources/publications/2021/research-reproducibility/
https://royalsociety.org/topics-policy/projects/explainable-ai/
https://crfm.stanford.edu/assets/report.pdf
https://crfm.stanford.edu/assets/report.pdf
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BOX 1

Explainability and interpretability 

178   Marcinkevičs, R., Vogt, J. E. 2023. Interpretable and explainable machine learning: A methods-centric overview with 
concrete examples (https://doi.org/10.1002/widm.1493) 

179   Lipton,. 2018. The mythos of model interpretability. Queue, 16(3), 31–57. (https://doi.org/10.1145/3236386.3241340) 

180   The Royal Society. 2019 Explainable AI: the basics. See https://royalsociety.org/topics-policy/projects/explainable-ai/ 
(accessed 21 December 2023).

181   Li Z, Ji J, and Zhang Y. 2023 From Kepler to Newton: Explainable AI for science. arXiv preprint.  
(doi.org/10.48550/arXiv.2111.12210) 

182   McDermid J, Jia Y, Porter Z and Habli I. 2021 Artificial intelligence explainability: the technical and ethical 
dimensions. Philosophical Transactions of the Royal Society A. 379(2207), 20200363. (doi.org/10.1098/rsta.2020.0363)

183   McGough M. 2018 How bad is Sacramento’s air, exactly? Google results appear at odds with reality, some say. 
Sacramento Bee. 7 August 2018. See https://www.sacbee.com/news/california/fires/article216227775.html  
(accessed 21 December 2023).

Explainability and interpretability refer 
to information that allows users to 
understand how an AI system works and 
the reasoning behind its outputs178. For 
example, in ML interpretability methods 
can offer information into ‘how a model 
works’ while explainability answers 
why certain conclusions are reached or 
“what else can this model tell me?”179. 

As set out in the Royal Society’s 2019 
report, Explainable AI: The basics180, 
ensuring explainability and interpretability 
in science can have the following 
benefits for trustworthiness: 

• Helps researchers better understand 
the insights and patterns that come 
from the use of complex machine 
learning models and large datasets.

• Enhances the potential for scientists 
to draw insights from AI systems 
to reveal potential new scientific 
breakthroughs or discoveries181. 

• Improves reproducibility by enabling 
third parties to scrutinise the model, as 
well as identify and correct errors.

• Improves transferability and assessment 
of whether models could be suitable 
across disciplines or contexts.

• Improves accountability and ensures 
scientists can offer justification 
behind the use of ML models182.

• In the case of science-based applications 
that affect the public – from health to 
public policy – explainability can ensure 
policy makers and regulators can provide 
oversight and prevent harms caused by 
erroneous predictions or models183.

https://doi.org/10.1002/widm.1493
https://doi.org/10.1145/3236386.3241340
https://royalsociety.org/topics-policy/projects/explainable-ai/
https://doi.org/10.48550/arXiv.2111.12210
https://doi.org/10.1098/rsta.2020.0363
https://www.sacbee.com/news/california/fires/article216227775.html
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The trade-off between explainability 
and performance
One of the main limitations to explainability 
is what has been referred to as a trade-
off between explainability and accuracy184. 
It is considered that the highest accuracy 
of modelling (in terms of prediction or 
classification) for large modern datasets is often 
achieved by opaque complex models. This is 
coupled with a general acceptance among AI 
users of opacity involved in using ML models. 
The competitive and fast-paced adoption 
of AI in scientific research is entrenching 
this acceptance even further. The current AI 
ecosystem rewards high performance and 
competitive models that are ’useful’ and 
accurate, rather than transparent, accessible, 
or ’user-friendly’185. 

184   Lundberg S and Lee S. 2017 A unified approach to interpreting model predictions. In Proceedings  
of the 31st International Conference on Neural Information Processing Systems. 4768–4777.  
(dl.acm.org/doi/10.5555/3295222.3295230) 

185   Cartwright H. 2023 Interpretability: Should – and can – we understand the reasoning of machine-learning systems? 
In: OECD (ed.) Artificial Intelligence in Science. OECD. (doi.org/10.1787/a8d820bd-en) 

186   Royal Society roundtable on reproducibility, April 2023.

187   Birhane A et al. 2023 Science in the age of large language models. Nat Rev Phys 5, 277–280.  
(doi.org/10.1038/s42254-023-00581-4)

188   Bell A, Solano-Kamaiko I, Nov O, and Stoyanovich J. 2022 It’s Just Not That Simple: An Empirical Study of the 
Accuracy-Explainability Trade-off in Machine Learning for Public Policy. In Proceedings of the 2022 ACM Conference 
on Fairness, Accountability, and Transparency. Association for Computing Machinery. 248–266.  
(doi.org/10.1145/3531146.3533090) 

189   Miller K. 2021 Should AI models be explainable? That depends. Stanford University Human-Centered Artificial 
Intelligence. See: https://hai.stanford.edu/news/should-ai-models-be-explainable-depends (accessed 21 December 2023).

190   Zhong X et al. 2022 Explainable machine learning in materials science. NPJ Comput Mater 8, 204.  
(doi.org/10.1038/s41524-022-00884-7) 

191   Combi C et al. 2022 A manifesto on explainability for artificial intelligence in medicine. Artificial intelligence in 
medicine. 133, 102423. (doi.org/10.1016/j.artmed.2022.102423) 

192   Hanson, B. Garbage in, garbage out: mitigating risks and maximizing benefits of AI in research.  
See https://www.nature.com/articles/d41586-023-03316-8 (accessed 5 March 2024)

These perceptions raise questions on whether 
opacity has been normalised as the new status 
quo and whether explainability is a feasible 
goal worth pursuing186,187. Furthermore, while 
transparency can enhance understanding, 
providing complex technical information about 
a system may not always improve the ability 
of end users to interact with and understand 
systems188. As an alternative to restricting 
research to explainable models only, some 
have suggested a greater focus on improving 
the interpretability of models189.   

Promising approaches to improve 
explainability or interpretability include: 

• Discipline-specific explainable AI methods  
(XAI): As users from diverse disciplines 
integrate AI into their work, explainability  
methods are becoming discipline and 
application-specific. XAI methods are 
emerging in fields such as material 
science190, biomedicine191, earth science192,  
 
 
 

https://dl.acm.org/doi/10.5555/3295222.3295230
https://doi.org/10.1787/a8d820bd-en
https://doi.org/10.1038/s42254-023-00581-4
https://doi.org/10.1145/3531146.3533090
https://hai.stanford.edu/news/should-ai-models-be-explainable-depends
https://doi.org/10.1038/s41524-022-00884-7
https://doi.org/10.1016/j.artmed.2022.102423
https://www.nature.com/articles/d41586-023-03316-8
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and environmental research193 for multiple 
purposes. These include enhancing scientific 
understanding derived from AI (eg better 
understanding of physical principles and 
generation of new hypothesis194); improving 
oversight and enforcement of environmental 
protection regulations; and minimising the 
environmental footprint of AI systems195.

• Glass-box architectures: Glass-box model 
architectures aim to make LLMs internal 
data representations more transparent 
by incorporating attention mechanisms, 
modular structures, and visualisation tools 
that can help surface how information flows 
through layers of the neural network. In 
addition, augmented training techniques 
like adversarial learning and contrastive 
examples can probe the model’s decision 
boundaries. Analysing when the LLM 
succeeds or fails on these special 
training samples provides insights into 
its reasoning process196,197.

193   Arashpour M. 2023 AI explainability framework for environmental management research. Journal of environmental 
management. 342, 118149. (doi.org/10.1016/j.jenvman.2023.118149) 

194   Zhong X et al. 2022 Explainable machine learning in materials science. npj Comput Mater 8, 204. (doi.org/10.1038/
s41524-022-00884-7)

195   Arashpour M. 2023 AI explainability framework for environmental management research. Journal of environmental 
management. 342, 118149. (doi.org/10.1016/j.jenvman.2023.118149)

196   Lengerich, B J et al. 2023. LLMs Understand Glass-Box Models, Discover Surprises, and Suggest Repairs. arXiv 
preprint (https://doi.org/10.48550/arXiv.2308.01157)

197   Garrett BL, Rudin C 2023. The Right to a Glass Box: Rethinking the Use of Artificial Intelligence in Criminal Justice. 
Cornell Law Review, Forthcoming, Duke Law School Public Law & Legal Theory Series.

198   Gaur, M, Faldu, K, & Sheth, A 2021. Semantics of the black-box: Can knowledge graphs help make deep learning 
systems more interpretable and explainable? IEEE Internet Computing, 25, 51-59.

199   Royal Society roundtable on reproducibility, April 2023.

• Knowledge graphs: Knowledge graphs are 
an advanced data structure that represents 
information in a network of interlinked 
entities. They reduce reliance on opaque 
statistical patterns in training data for LLMs. 
Medical LLMs, for example, can leverage 
ontological biomedical data in knowledge 
graphs for transparent structured reasoning 
about diseases and treatments. During 
inference, LLMs consult knowledge graphs 
for relevant facts, providing a grounded 
framework alongside their intrinsic 
pattern recognition. Joint training with 
knowledge graphs improves LLMs’ factual 
reasoning and aids in identifying gaps or 
misconceptions through audits198.

Barriers limiting reproducibility
Beyond technical challenges, there are a 
series of institutional and social constraints 
that prevent researchers from adopting 
more rigorous and transparent processes. 
Table 1 lists key barriers to reproducibility in 
AI-based research199.

“  One of the things 
that is true with 
modelling is you 
can get almost 
any result you 
want based on 
the assumptions 
you use to drive 
them. I think this is 
a dangerous area 
that our field is 
moving in. It’s too 
much reliance on 
model results and 
the pretty pictures 
that come out of it 
as a reproduction 
of truth.”

  Royal Society 
roundtable participant

https://doi.org/10.1016/j.jenvman.2023.118149
https://doi.org/10.1038/s41524-022-00884-7
https://doi.org/10.1038/s41524-022-00884-7
https://doi.org/10.1016/j.jenvman.2023.118149
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TABLE 1

200 Benjamin D et al. 2018 Redefine statistical significance. Nat Hum Behav 2, 6–10. (doi.org/10.1038/s41562-017-0189-z) 

201   Bommasani et al. 2021. On the opportunities and risks of foundation models. See: https://crfm.stanford.edu/assets/report.pdf (accessed March 21 2024) 

202  Ibid.

203   Rudin C. 2019 Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat Mach Intell 1, 
206–215). (doi.org/10.1038/s42256-019-0048-x) 

Barriers to reproducibility and examples. 

Barrier to reproducibility Examples 

Misconceptions  
and assumptions  
about ML200

• An underlying assumption that machine learning (ML) models are inherently reproducible 
due to their reliance on computation. 

• Overreliance on ML-based outputs and questionable uses of statistical techniques to 
smoothen bias or exclude uncomfortable or inconvenient results.

Computational  
or environmental 
conditions 

• Different hardware and software environments may yield different results.
• Reproducibility at scale implies having access to computation capacity that enables 

researchers to validate complex machine learning models201.
• Private sector companies are better resourced than academia and can afford to train and 

validate larger models (eg OpenAI’s GPT-4) while researchers in other sectors cannot202.

Documentation  
and transparency 
practices 

• Insufficient or incomplete documentation around research methods, code, data,  
or computational environments.

• The growing development and adoption of less transparent, proprietary models.
• Lack of discipline-specific documentation that addresses barriers faced across fields, 

applications, and research contexts (eg healthcare-specific documentation that tackles 
reproducibility guidelines for disease treatment and diagnosis research).

• Insufficient efforts to make documentation accessible to scientists from different 
backgrounds and with diverse levels of technical expertise.

Skills, training  
and capacity

• Lack of clarity regarding who is responsible for different stages of the workflow and few 
resources to incorporate reproducibility work.

• Lack of training for new ML users and insufficient guidelines on the limitations of different 
models and the appropriateness of different techniques for field-specific applications.

• Lack of tools for non-ML experts to follow reproducibility guidelines and identify limitations 
of models.

• Lack of mechanisms that facilitate interdisciplinary collaboration between scientists who 
do not have a technical background in AI and computer or data scientists who carry 
expertise to input data, identify errors, and validate experiments. 

Incentives and  
research culture

• Few career progression opportunities in academia for roles needed to advance open  
and reproducible research (eg data curation and wrangling; research data management; 
data stewardship; research managers).

• No incentives to publish errors in ML-based research (failed results) or remedies 
• Narrow view of what outputs are worthy of publishing (eg data, models) and limited 

rewards for conducting open science practices and publishing reproducibility reports.
• No specific incentives to encourage the use and development of human-interpretable 

models when possible203.

https://doi.org/10.1038/s41562-017-0189-z
https://crfm.stanford.edu/assets/report.pdf
https://doi.org/10.1038/s42256-019-0048-x


CHAPTER TWO

46 SCIENCE IN THE AGE OF AI

Research culture and reproducibility
The ‘publish or perish’ culture was 
highlighted as a key limiting factor for 
scientists, in so far as it rewards the number 
and type of publications as requisite for 
career progression but does not recognise 
datasets, documentation or reproduced 
studies as outputs worth rewarding. Coupled 
with ineffective practices of quality control 
and self-correction within journals, the 
current publishing system is considered 
to play a significant role in diminishing 
incentives to conduct the time-intensive 
and collaborative work required to 
demonstrate reproducibility204. 

These challenges are further explored in the 
Royal Society’s 2018 report, Research culture: 
Embedding inclusive excellence. The report 
highlights that one of the primary incentives 
for disseminating research findings should 
be to benefit the community as a whole 
and to advance the research enterprise205. 
It also discusses the value of transparency 
for embedding a culture of integrity and as 
a means for guarding against unnecessary 
duplication of research.

204   Leonelli S. 2018 Rethinking reproducibility as a criterion for research quality. In Including a symposium on Mary 
Morgan: curiosity, imagination, and surprise. 36, 129-146. Emerald Publishing Limited.

205  The Royal Society. 2018 Research culture: embedding inclusive excellence. See https://royalsociety.org/topicspolicy/
publications/2018/research-culture-embedding-inclusive-excellence/ (accessed 21 December 2023)

206  Leonelli S. 2018 Rethinking reproducibility as a criterion for research quality. In Including a symposium on Mary 
Morgan: curiosity, imagination, and surprise. 36, 129-146. Emerald Publishing Limited.

207   Miller K. 2022 Healthcare algorithms don’t always need to be generalizable. Stanford University Human-Centered 
Artificial Intelligence. See https://hai.stanford.edu/news/healthcare-algorithms-dont-always-need-be-generalizable 
(accessed 21 December 2023).

208   Leonelli S. 2018 Rethinking reproducibility as a criterion for research quality. In Including a symposium on Mary 
Morgan: curiosity, imagination, and surprise. 36, 129-146. Emerald Publishing Limited.

Reproducibility across contexts
A universal approach to achieving 
reproducibility is not desirable. This usually 
demands a high level of control over 
environmental and social conditions of a 
study, as well as a direct replication of inputs, 
outputs, and methods that may be unfeasible 
across diverse research environments, 
cultures, and contexts. 

A standardised approach to reproducibility 
can also discourage researchers from 
approaching documentation and reporting 
from a reflexive standpoint that addresses 
variability and the more idiosyncratic aspects 
of scientific research206. Models that are 
not generalisable across contexts can, for 
example, offer valuable insights regarding the 
source of variations and why they matter. In 
the context of healthcare, the local conditions 
(eg, admission protocols, lab testing, record 
managements, or clinician-patient interactions) 
of a hospital can significantly shift the outputs. 

An alternative to a standardised approach to 
improving reproducibility is a more contextual 
approach to documentation and research 
protocols that embraces variability and provides 
insight into the local adaptation of models across 
contexts207. This approach has the potential to 
support researchers who wish to adapt models, 
rather than exporting or importing models that 
do not transfer well to different geographical 
and cultural ‘contexts of discovery’208. 

“  The [reproducibility] 
crisis or the 
challenge with 
machine learning 
is about who 
is involved in 
determining how 
reproducibility 
is defined and 
for whom will 
this definition be 
useful? Are we 
applying contextual 
knowledge 
and situated 
understanding 
of what the 
technology will be 
used for? To what 
extent will it support 
diverse research 
communities 
to enhance the 
trustworthiness of 
their experiments?”

  Royal Society 
roundtable participant

https://royalsociety.org/topicspolicy/publications/2018/research-culture-embedding-inclusive-excellence/
https://royalsociety.org/topicspolicy/publications/2018/research-culture-embedding-inclusive-excellence/
https://hai.stanford.edu/news/healthcare-algorithms-dont-always-need-be-generalizable
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BOX 2

Robustness and generalisability 
in ML 

Model robustness refers to a model’s ability 
to perform accurately across contexts209. 
While modern ML models are optimised 
to accomplish narrow and specific tasks, 
developments in AI involve developing the 
capacity for ‘generalising’ or transferring 
learning from a training task to novel 
applications. Without generalisability, 
AI models might perform well on the 
training data but fail to perform well on 
new, unseen data, or in new research 
environments.  Reproducibility plays a 
major role in ensuring parties from diverse 
research environments can replicate an 
experiment and test generalisability.  

  

209  The Royal Society. 2017 Machine Learning: The power and promise of computers that learn by example.  
See https://royalsociety.org/topics-policy/projects/machine-learning/ (accessed 21 December 2023).

210   Birhane A et al. 2023 Science in the age of large language models. Nat Rev Phys 5, 277–280.  
(doi.org/10.1038/s42254-023-00581-4) 

211   Center for Open Science. What is preregistration? See https://www.cos.io/initiatives/prereg 
(accessed 21 December 2023).

212   Papers With Code. ML Reproducibility Challenge 2022. See https://paperswithcode.com/rc2022  
(accessed 21 December 2023).

Advancing transparency and trustworthiness 
Challenges with trustworthiness have led 
scientists to develop research protocols, 
standards, tools, and open science practices 
to ensure transparency and scientific rigour 
in AI-based research210. These include: 
 
Incentivising the publication of 
reproducibility reports 
• Pre-registration and registered reports. 

Initiatives to publish methodologies as 
promoted by the Centre for Open Science 
can enhance transparency of research 
studies, by encouraging researchers to 
document their research plan before 
conducting further research and submitting 
the methodology to peer review211.

• Pre-print servers. The increased use of preprint 
servers (eg such as bioRxiv by the biological 
and biomedical communities) may play a role 
in facilitating communication of successful and 
unsuccessful replication results.

• Grand challenges. For example, the ML 
Reproducibility Challenge invites participants 
to reproduce papers published in eleven top 
ML conferences and publish a community-led 
reproducibility report documenting findings212.

https://doi.org/10.1038/s42254-023-00581-4
https://www.cos.io/initiatives/prereg
https://paperswithcode.com/rc2022
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Guidance to produce documentation and 
follow open science practices 
• Reproducibility checklists and protocols. 

Examples include the Machine Learning 
Reproducibility Checklist213, Checklist 
for AI in Medical Imaging (CLAIM)214, or 
the field-agnostic REFORMS checklist215, 
developed by experts in computer science, 
mathematics, social science, and health 
research. These facilitate compliance and 
documentation of the multiple dimensions 
of reproducibility.

• Community standards for documentation. 
The development of domain-specific 
community standards such as TRIPOD-AI216 
provide guidance on how to document, 
report and reproduce machine-learning 
based prediction model studies in health 
research. The synthetic biology and 
genomics community have also defined 
experimental protocol standards and 
documentation of the genomic workflow 
to improve reproducibility217,218.

213   McGill School of Computer Science. The Machine Learning Reproducibility Checklist v2.0.  
See: https://www.cs.mcgill.ca/~jpineau/ReproducibilityChecklist.pdf (accessed 21 December 2023).

214   Mongan J, Moy L, and Kahn C. 2020 Checklist for Artificial Intelligence in Medical Imaging (CLAIM): A Guide for 
Authors and Reviewers. Radiology. Artificial intelligence, 2(2), e200029. (doi.org/10.1148/ryai.2020200029) 

215   Reporting standards for ML-based science. See: https://reforms.cs.princeton.edu/ (accessed 21 December 2023).

216   Collins G et al. 2021 Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool  
(PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence.  
BMJ open, 11(7), e048008. (doi.org/10.1136/bmjopen-2020-048008) 

217   Lin X. 2020 Learning Lessons on Reproducibility and Replicability in Large Scale Genome-Wide Association Studies. 
Harvard Data Science Review. 2. (doi.org/10.1162/99608f92.33703976) 

218   Kanwal S et al. 2017 Investigating reproducibility and tracking provenance – A genomic workflow case study.  
BMC Bioinformatics 18, 337. (doi.org/10.1186/s12859-017-1747-0) 

219   Meta. 2022 System Cards, a new resource for understanding how AI systems work. Meta. 23 February 2022.  
See https://ai.meta.com/blog/system-cards-a-new-resource-for-understanding-how-ai-systems-work/  
(accessed 21 December 2023).

220  Google. Model Cards. See https://modelcards.withgoogle.com/about (accessed 21 December 2023).

221   Hugging Face. Model Cards. See https://huggingface.co/docs/hub/model-cards (accessed 21 December 2023).

222   Leonelli S. 2018 Rethinking reproducibility as a criterion for research quality. In Including a symposium on Mary 
Morgan: curiosity, imagination, and surprise (Vol. 36, pp. 129-146). Emerald Publishing Limited.

• The release of data sheets and model 
cards. Industry can play an important role in 
releasing information that provide insight into 
what a model does; its intended audience; 
intended uses; potential limitations; 
confidence metrics; and information about 
the model architecture and the training data. 
Meta219, Google220, and Hugging Face221 have 
released different iterations of model cards.

• Context-aware documentation. Involving 
diverse actors in defining how reproducibility 
is defined; promoting reporting mechanisms 
that explicitly address contextual inputs 
and sources of variation; and documenting 
how local or team culture influences 
implementation222.

https://www.cs.mcgill.ca/~jpineau/ReproducibilityChecklist.pdf
https://doi.org/10.1148/ryai.2020200029
https://reforms.cs.princeton.edu/
https://doi.org/10.1136/bmjopen-2020-048008
https://doi.org/10.1162/99608f92.33703976
https://doi.org/10.1186/s12859-017-1747-0
https://ai.meta.com/blog/system-cards-a-new-resource-for-understanding-how-ai-systems-work/
https://modelcards.withgoogle.com/about
https://huggingface.co/docs/hub/model-cards
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Collaborative and accessible tools 
and platforms 
• Online collaborative platforms and 

repositories that facilitate the sharing of 
datasets; software versions; algorithms; 
workflows; and methods. Examples include 
CodaLab223 and OpenML224.

• Interactive and code-free tools. The 
development of accessible AI tools can 
help build trust and incorporate user 
expertise into the design and evaluation 
of model parameters. Examples include 
interactive dashboards225 and code-
free solutions that employ user-friendly 
interfaces to display datasets, confidence 
metrics and train the model with new 
examples. Code-free tools and ‘edge 
models’ can also be used in regions 
without internet access with limitations 
in functionality226.

223   CodaLab. CodaLab Worksheets. See https://worksheets.codalab.org/ (accessed 21 December 2023).

224   OpenML. See https://www.openml.org/ (accessed 21 December 2023).

225   Morris M. 2023 Scientists’ perspectives on the potential for generative AI in their fields. Google Research.  
(doi.org/10.48550/arXiv.2304.01420) 

226   Korot E et al. 2021 Code-free deep learning for multi-modality medical image classification. Nat Mach Intell. 3, 
288–298. (doi.org/10.1038/s42256-021-00305-2) 

https://worksheets.codalab.org/
https://www.openml.org/
https://doi.org/10.48550/arXiv.2304.01420
https://doi.org/10.1038/s42256-021-00305-2
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Research skills and interdisciplinarity

227   Eguíluz, V M, Mirasso, C R, & Vicente, R 2021. Fundamentals and Applications of AI: An Interdisciplinary 
Perspective. Frontiers in Physics, 8. (https://doi.org/10.3389/fphy.2020.633494)

228   Weber, C T, & Syed, S. 2019. Interdisciplinary optimism? Sentiment analysis of Twitter data. Royal Society  
open science, 6. (https://doi.org/10.1098/rsos.190473)

229   The Royal Society roundtable on the role of interdisciplinarity in AI for scientific research, June 2023.

230   Wang H et al 2023. Scientific discovery in the age of artificial intelligence. Nature, 620. 47-60.  
(https://doi.org/10.1038/s41586-023-06221-2)

231   The Royal Society roundtable on the role of interdisciplinarity in AI for scientific research, June 2023.

232   Zeller F, Dwyer L. 2022 Systems of collaboration: challenges and solutions for interdisciplinary research in AI  
and social robotics. Discover Artificial Intelligence, 2.12. (https://doi.org/10.1007/s44163-022-00027-3)

233   The Royal Society roundtable on the role of interdisciplinarity in AI for scientific research, 2023.

234   University of Cambridge. Centre for the study of existential risk. See https://www.cser.ac.uk/  
(accessed 13 December 2023)

235  The Royal Society roundtable on the role of interdisciplinarity in AI for scientific research, June 2023.

236   University of Exeter. Environmental Intelligence: Data Science & AI for Sustainable Futures.  
See https://www.exeter.ac.uk/research/eicdt/ (accessed 22 February 2024)

The successful application of AI in scientific 
research, and its translation to real-world 
value, may often require interdisciplinary skills 
and knowledge227. Interdisciplinary research 
(IDR) involves activities that integrate more 
than one discipline with the aim to create new 
knowledge or solve a common problem228. 
Computer scientists need domain expertise 
to design suitable models, while domain 
experts need AI expertise to leverage those 
tools for their research. This interdisciplinary 
collaboration can facilitate knowledge sharing 
and drive innovative solutions to complex 
global problems such as climate change, 
biodiversity loss and epidemics229,230. 

This chapter draws upon insights obtained 
from a roundtable hosted by the Royal Society 
on the role of interdisciplinarity in ensuring the 
advancement of AI-based scientific research231.

Challenges for interdisciplinarity  
in AI-based research 
Interdisciplinary collaboration faces various 
barriers including the following:

1. Siloed academic disciplines and  
research cultures
Disciplines often operate within distinct 
‘epistemic cultures’ encompassing norms; 
methodologies; theoretical frameworks; 
evaluation; and funding models232. 
Establishing a shared language demands 
persistent effort and initiative to bridge 
terminological, paradigmatic, and cognitive 
gaps233. Interdisciplinary centres can take 
an interdisciplinary approach to AI-based 
research. For instance, the Centre for the 
Study of Existential Risk at the University 
of Cambridge studies the biological, 
environmental, global justice, and extreme 
technological risks of AI234,235. Similarly, 
doctoral training programmes, such as 
the UKRI Centre for Doctoral Training in 
Environmental Intelligence236, can foster 
an interdisciplinary culture by providing 
PhD students with cross-disciplinary 
training in AI ethics, governance, and 
responsible innovation.

“  We’re getting to a 
scale of data and 
complexity, that 
you can’t do it all 
yourself, or you 
can but you will be 
limited. If you want 
to be successful, 
you need to 
understand how 
to collaborate and 
co-create with 
people. And that 
is hard. It is painful 
and it is slower, 
but potentially 
more impactful, 
right? […] If you 
want quick results, 
do it yourself. 
If you want 
impactful things, 
you need to work 
together and do 
things differently.”

  Royal Society 
roundtable participant

https://doi.org/10.3389/fphy.2020.633494
https://doi.org/10.1098/rsos.190473
https://www.cser.ac.uk/
https://www.exeter.ac.uk/research/eicdt/


CHAPTER THREE

SCIENCE IN THE AGE OF AI 53

2. Siloed data infrastructures
While disciplines are collecting large 
amounts of data, siloed data infrastructure 
limits knowledge and data sharing237. 
Integrated data systems and consortiums 
can mitigate data redundancies, 
standardise data processing and facilitate 
researcher access to data, while reducing 
duplication of effort. Examples include the 
Environmental Data Service, a network 
providing UK environmental science data 
and tools for interdisciplinary analysis238 
and the Ocean Data Platform, which 
aggregates global ocean data in a cloud 
environment, overcoming storage and 
computing limitations239.  

3. Different publication models across 
scientific disciplines
Divergent publication models limit 
interdisciplinary collaboration in AI 
research Examples include disparities in 
publication venues (conference vs. journal 
publications), publication styles (single 
vs. group author publications), and levels 
of disclosure (open vs. closed science), 
impacting incentives and readiness to 
collaborate in AI-based research240. 

237   National Academy of Sciences. 2024 Toward a New Era of Data Sharing: Summary of the US-UK Scientific Forum  
on Researcher Access to Data. Washington, DC: The National Academies Press. https://doi.org/10.17226/27520.

238   UKRI NERC Environmental Data Service. See: https://eds.ukri.org/ 

239   National Academy of Sciences. 2024 Toward a New Era of Data Sharing: Summary of the US-UK Scientific Forum  
on Researcher Access to Data. Washington, DC: The National Academies Press. https://doi.org/10.17226/27520. 

240  The Royal Society roundtable on the role of interdisciplinarity in AI for scientific research, June 2023.

241   Bengio Y. 2020 Time to rethink the publication process in machine learning. See https://yoshuabengio.
org/2020/02/26/time-to-rethink-the-publication-process-in-machine-learning/ (accessed 10 January 2024)

242   Ibid.

243   Slow Science. See http://slow-science.org/ (accessed 10 January 2024)

The emerging AI conference publication 
model, driven by frequent deadlines, is 
accelerating paper output leading to a 
cycle of frequent conferences, such as 
the Conference on Neural Information 
Processing Systems (NeurIPS) and the 
International Conference on ML (ICML) 241. 
This may result in a high volume of papers 
that lack depth and quality, contrasting the 
iterative journal review process242. Secretive 
practices (eg closed data and models) also 
conflict with open science principles. This 
model differs significantly from traditional 
academic journal publications and may limit 
trustworthy IDR in AI-based research. 

A hybrid journal-conference model where 
papers undergo thorough review in short 
turnaround journals, such as the Journal of 
Machine Learning Research (JMLR), before 
conference presentations could encourage 
higher-quality results and facilitate 
collaborations across disciplines valuing 
different publication norms243. Achieving 
this is likely to require a multi-stakeholder 
approach including funding agencies, 
research institutions, and AI conference 
communities to balance cutting-edge 
dissemination with deeper review. 

https://eds.ukri.org/
https://yoshuabengio.org/2020/02/26/time-to-rethink-the-publication-process-in-machine-learning/
https://yoshuabengio.org/2020/02/26/time-to-rethink-the-publication-process-in-machine-learning/
http://slow-science.org/
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4. Collaborating with non-STEM researchers
Reconciling quantitative and qualitative 
methods can pose workflow challenges 
for interdisciplinary collaboration between 
science, technology, engineering and 
maths (STEM) and non-STEM researchers 
like arts, humanities, and social sciences. 
Furthermore, non-STEM researchers 
face additional obstacles related to 
funding opportunities and a lack of ‘true 
interdisciplinary inclusion’ which can limit 
meaningful, sustained collaboration244. 

A STEAM approach, where art is 
directly included into STEM, can help 
arts complement STEM research245. 
Interdisciplinary programmes such as 
Institute for Interdisciplinary Data Science 
and AI at the University of Birmingham246 
and the College of Integrative Sciences 
and Arts (CISA) at Arizona State University247 
can address this gap by supporting 
researchers to work across disciplines248. 

244   The Royal Society interviews with scientists and researchers. 2022 - 2023

245   The Royal Society. 2023 Science in the metaverse: policy implications of immersive technologies.  
See https://royalsociety.org/news-resources/publications/2023/science-in-the-metaverse/ (accessed 21 December 2023).

246   University of Birmingham. The Institute for Interdisciplinarity Data Science and AI.  
See https://www.birmingham.ac.uk/research/data-science/index.aspx (accessed 11 January 2024)

247   Arizona State University. See: https://news.asu.edu/20230407-university-news-asu-college-integrative-sciences-
arts-reorganizes-3-new-schools. (accessed 13 December 2023)

248   The Royal Society. 2023 Science in the metaverse: policy implications of immersive technologies.  
See https://royalsociety.org/news-resources/publications/2023/science-in-the-metaverse/ (accessed 21 December 2023).

249   The Royal Society roundtable on the role of interdisciplinarity in AI for scientific research, June 2023.

250  Wu T,  Zhang, SH. 2024 Applications and Implication of Generative AI in Non-STEM Disciplines in Higher Education. 
In: Zhao, F., Miao, D. (eds) AI-generated Content. AIGC 2023. Communications in Computer and Information 
Science, vol 1946. Springer, Singapore. (doi.org/10.1007/978-981-99-7587-7_29)

251   The Royal Society. 2023 Science in the metaverse: policy implications of immersive technologies.  
See https://royalsociety.org/news-resources/publications/2023/science-in-the-metaverse/ (accessed 21 December 2023).

252   Zeller F, Dwyer L. 2022 Systems of collaboration: challenges and solutions for interdisciplinary research in AI  
and social robotics. Discover Artificial Intelligence, 2. 12. (https://doi.org/10.1007/s44163-022-00027-3)

253   UNESCO Recommendation on Open Science. 2021. See: https://www.unesco.org/en/legal-affairs/recommendation-
open-science  (accessed 6 February 2024)

Collaboration between AI experts and 
researchers in non-STEM fields can offer 
opportunities including249: 

• Adopting AI-driven methods in non-
STEM fields (eg Generative AI in art and 
photography)250; 

• Leveraging artists’ creativity and expertise 
for AI-based research (eg user experience 
design)251;

• Including social science and humanities 
perspectives for responsible AI, AI safety, 
and research ethics discussions252. 

• Adopting non-STEM participatory research 
methods, including citizen science and open 
dialogues, to enhance trust, transparency, 
and inclusivity in AI-based research253. 

“  Students are 
expected to do 
certain ‘service 
tasks’. It’s 
important work. 
We call it ‘service 
work’ because 
because it’s really 
a service to the 
science, but it’s 
not glorious, it’s 
not glamorous, 
it’s not credited 
enough. And in 
the end, when 
you’re looking for 
academic jobs, 
these things are 
not valued.”

  Royal Society 
interview participant

https://royalsociety.org/news-resources/publications/2023/science-in-the-metaverse/
https://www.birmingham.ac.uk/research/data-science/index.aspx
https://news.asu.edu/20230407-university-news-asu-college-integrative-sciences-arts-reorganizes-3-new-schools
https://news.asu.edu/20230407-university-news-asu-college-integrative-sciences-arts-reorganizes-3-new-schools
https://royalsociety.org/news-resources/publications/2023/science-in-the-metaverse/
https://royalsociety.org/news-resources/publications/2023/science-in-the-metaverse/
https://www.unesco.org/en/legal-affairs/recommendation-open-science
https://www.unesco.org/en/legal-affairs/recommendation-open-science
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Emerging research skills in AI-based research
The increased application of AI highlights the 
need for foundational AI and data skills across 
research fields254. While advanced data and 
programming expertise may not always be 
required, nor AI methods necessary for all 
research areas, awareness of the latest tools 
and techniques can increase accessibility and 
benefits for science. The following areas of 
emerging research skills were drawn from Royal 
Society interviews and roundtables involving 
scientists from across academia and industry.

1. Specialist data skills 
Demand for specialised data skills has 
increased as more research fields adopt AI. 
Data scientists and engineers are predicted 
to have the fastest growth between 2023 
and 2027255 and roles including data 
stewards and reproducibility experts are 
gaining increasing value as AI challenges 
emerge (See Chapter 2). However, critical 
data management tasks including curation, 
cleaning, and quality assurance are often 
undervalued as “service work”256. While 
enhancing data literacy across disciplines 
can aid AI uptake, the rapid advancement 
of AI tools risks outpacing training on 
effective data practices. 

254    The Royal Society. 2019. Dynamics of data science skills: How can all sectors benefit from data science talent.  
See https://royalsociety.org/-/media/policy/projects/dynamics-of-data-science/dynamics-of-data-science-skills-report.pdf 
(accessed 6 January 2024) 

255     World Economic Forum. 2023 The Future of Jobs Report 2023. See https://www3.weforum.org/docs/WEF_Future_
of_Jobs_2023.pdf (accessed 30 January 2024)

256  The Royal Society roundtable on reproducibility, April 2023

257    Cambridge Spark. See https://www.cambridgespark.com/ (accessed 1 August 2023)

258   Petkova, D, Roman, L. 2023 AI in science: Harnessing the power of AI to accelerate discovery and foster innovation 
– Policy brief, Publications Office of the European Commission, Directorate-General for Research and Innovation. 
(doi/10.2777/401605)

2. AI literacy training 
The skills gap can also include a lack of 
understanding of challenges related to bias, 
reproducibility, and data requirements when 
employing AI models. Upskilling scientific 
domain experts is essential for envisioning 
innovative AI applications. Organisations 
like Cambridge Spark provide educational 
resources for data science, addressing 
the skills gap through apprenticeships, 
corporate training, or skills bootcamps257. 
Additionally, the EU is fostering education 
and skills through various initiatives under 
Horizon Europe, such as the European 
Institute for Innovation and Technology 
Knowledge and Innovation Communities 
(EIT KICs), the European Innovation Council, 
and the Erasmus+ programme258.

“  As an ageing 
scientist who is not 
a bioinformatics 
person, I find a 
lot of these things 
quite impenetrable. 
Often you don’t 
have the confidence 
to find something 
and you’re going 
to need other 
colleagues to really 
go in there and have 
an in-depth look.”

  Royal Society 
interview participant

https://royalsociety.org/-/media/policy/projects/dynamics-of-data-science/dynamics-of-data-science-skills-report.pdf
https://www3.weforum.org/docs/WEF_Future_of_Jobs_2023.pdf
https://www3.weforum.org/docs/WEF_Future_of_Jobs_2023.pdf
https://www.cambridgespark.com/
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3. AI ethics training 
Researchers are adopting new AI 
techniques, such as generative AI, without a 
full understanding of the ethical implications. 
This is due to a lack of evidence on 
potential risks and limited AI ethics training. 
(See Chapter 5)259. 

Collaboration with ethicists and AI ethics 
training can help bridge this gap. This is 
being explored by organisations such as the 
Montreal AI Ethics Institute, an international 
non-profit organisation, which aims to 
‘democratise AI ethics literacy’ by providing 
accessible resources, including a living 
dictionary, and an AI ethics briefing260. 

Involving researchers in AI assurance 
activities can also contribute towards 
building skills to identify vulnerabilities and 
risks in AI systems. Examples include red 
teaming (See Box 3) or training in principles 
like adversarial machine learning261.

259    Solaiman, I. 2023 The gradient of generative AI release: Methods and considerations. In Proceedings of the 2023 ACM 
Conference on Fairness, Accountability, and Transparency (pp. 111-122). (https://doi.org/10.48550/arXiv.2302.04844)

260  Montreal AI Ethics Institute. See https://montrealethics.ai/. (accessed 26 February 2024.) 

261   The Royal Society. 2024 Insights from the Royal Society & Humane Intelligence red-teaming exercise on AI-generated 
scientific disinformation. See: https://royalsociety.org/news-resources/projects/online-information-environment/ 
(accessed 7 May 2024) 

262   OECD. 2023. Artificial Intelligence in Science: Challenges, Opportunities and the Future of Research, OECD 
Publishing, Paris (https://doi.org/10.1787/a8d820bd-en).

263   Archetti C, Montanelli A, Finazzi D, Caimi L, Garrafa E. Clinical laboratory automation: a case study. J Public Health 
Res. 2017;6(1):881. (doi: 10.4081/jphr.2017.881)

264   Al Naam YA et al 2022 The Impact of Total Automaton on the Clinical Laboratory Workforce: A Case Study. J Health 
Leadersh. 9;14:55-62. (doi:10.2147/JHL.S362614)

4. Human-in-the-loop systems and skills 
AI can augment researchers’ skills,  
assist tasks, or automate processes262 

(See Chapter 1). It can also play a role 
in supporting human judgement and 
creativity in scientific endeavours. Defining 
complementary roles for humans and 
AI to support scientific research and 
reskilling for automation (as seen in total 
laboratory automation case studies263) 
will be necessary. This transition also 
highlights the need for human-in-the-
loop systems for quality control, quality 
assurance, and adaptation to changing 
workflow dynamics264. 

“  I have always 
used machine 
learning 
technologies, but 
I hadn’t thought 
about bad uses 
of AI. I never had 
an ethics lecture 
in my life as a 
scientist and that 
was in the last 
30 years or so of 
my educational 
life. That goes to 
show that we’ve 
messed up over 
the last 30 years.”

  Royal Society 
roundtable participant

https://doi.org/10.48550/arXiv.2302.04844
https://montrealethics.ai/
https://doi.org/10.1787/a8d820bd-en
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BOX 3

Insights from the Royal Society & Humane Intelligence red-teaming exercise 
on AI-generated disinformation content

Red teaming refers to the process of 
actively identifying potential weaknesses, 
failure modes, biases, or other 
limitations in a model, technology, or 
process by having groups ‘attack’ it. 

In the run-up to the UK’s 2023 Global 
AI Safety Summit, the Royal Society and 
Humane Intelligence brought together 
40 postgraduate students in health 
and climate sciences to scrutinise 
how potential vulnerabilities in LLMs 
(Meta’s Llama 2) could enable the 
production of scientific misinformation. 

By assuming different ‘misinformation 
actor’ roles, participants tested the model’s 
guardrails related to topics of infectious 
diseases and climate change. In under 
two hours, they exposed concerning 
vulnerabilities, including the model’s inability 
to convey scientific uncertainty and its 
reliance on questionable or ficticious sources. 

While guardrails prevented some 
common disinformation trends, such as 
those related to COVID-19, participants 
were still able to generate outputs 
that distorted verifiable scientific facts 
arriving at incorrect conclusions. 

The exercise demonstrated the value 
of involving domain experts in AI safety 
assessments before deployment. Their 
scientific expertise allowed them to stress 
test systems in ways that exposed critical 
failures. Participants also expressed 
optimism regarding the future of LLM 
disinformation guardrails and more 
confidence in using LLMs in their own 
research. Their insights suggest that red 
teaming could play a role in enhancing AI 
literacy within the scientific community.
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CASE STUDY 2

AI and material science

265   Davies et. al. 2016 Computational screening of all stoichiometric inorganic materials. Chem. 1, 617-627.  
(https://doi.org/10.1016/j.chempr.2016.09.010).

266   Pyzer-Knapp et. al. 2023 Accelerating materials discovery using artificial intelligence, high performance computing 
and robotics. npj Computational Materials. 8, 84. (https://doi.org/10.1038/s41524-022-00765-z ).

267   Materials Genome Initiative. About the Materials Genome Initiative. See https://www.mgi.gov/about  
(accessed 14 July 2023).

268   Argaman N, Makov G. 2000 Density functional theory: An introduction. American Journal of Physics. 68, 69-79. 
(https://doi.org/10.1119/1.19375).

269   Alberi et. al. 2019 The 2019 materials by design roadmap. Journal of Physics D: Applied Physics. 52, 013001.  
(https://doi.org/10.1088/1361-6463/aad926).

270   Tao Q, Xu P, Li M, Lu W. 2021. Machine learning for perovskite materials design and discovery. npj Computational 
Materials. 7, 23. (https://doi.org/10.1038/s41524-021-00495-8).

271   Ross et. al. 2022 Large-scale chemical language representations capture molecular structure and properties. 
Nature Machine Intelligence. 4, 1256-1264. (https://doi.org/10.1038/s42256-022-00580-7).

272   Liu Y, Zhao T, Ju W, Shi S. 2017 Materials discovery and design using machine learning. Journal of Materiomics. 3, 
159-177. (https://doi.org/10.1016/j.jmat.2017.08.002).

Materials science is a field where AI and 
ML techniques have the potential to be 
transformative, with wide-ranging societal 
benefits, provided that appropriate support 
infrastructure is in place. 

The need to develop advanced materials, 
from new battery materials for energy storage 
to catalysts to create biodegradable plastics, 
has been a driver for emerging technologies. 
Historically, this intricate process relied heavily 
on a scientist’s prior knowledge, intuition, or 
serendipity to navigate an estimated 10 trillion 
possible chemistry combinations. 

However, AI and ML are now accelerating 
materials discovery and optimisation265. 
These techniques rapidly screen candidates, 
predict structures, and offer suggested 
changes which would have overwhelmed 
manual approaches266. In turn, AI-based 
workflows can lead to time efficiencies, 
allowing more ideas to progress from 
conception to commercialisation within 
years instead of decades267. 

Materials design and prediction
Modelling and simulation are well-established 
techniques within materials science. Density 
Functional Theory (DFT)268 is one of the 
most common modelling methods and is an 
important tool in materials modelling. It allows 
for accurate calculations of materials behaviour, 
although it does not work well for certain 
classes of materials or for certain properties 
that are important to material behaviour. It is 
also a computationally expensive method 
and, as such, is limited to materials of low to 
medium complexity269. Other techniques such 
as Monte-Carlo simulation and molecular 
dynamics are also commonly used but are 
similarly computationally expensive for 
complex materials270.

AI and ML techniques can be used to predict 
the structure and properties of materials. An 
example of this is using generative algorithms 
and foundation models to predict what 
materials might exhibit desirable properties271. 
However, the current materials knowledge 
base is large and disparate, with data often 
being incomplete, noisy, inconsistently 
formatted, and poorly labelled272. Significant 
amounts of materials data are sequestered 
in journals without open-access, or never 
published at all. Furthermore, data from 
negative or unsuccessful experiments are 
not routinely published. 
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In recent years, there have been several 
materials databases developed with the goal 
of aggregating data in consistent formats 
which can then be used for further research. 
Examples include the Materials Project273 
and Aflow274 databases (which both contain 
computed properties) and the Inorganic 
Crystal Structure Database (ICSD)275 and the 
High Throughput Experimental Materials 
(HTEM)276 database (which are both examples 
of experimental databases). There are also 
tools to help with the creation and analysis 
of materials datasets, such as NOMAD277, 
ChemML278, and atomate279. These datasets 
which can be significant in size (eg the 
Materials Project database currently contains 
data for more than 150,000 materials), 
have been facilitating the use of ML for 
materials discovery. 

273   Jain et. al. 2013 The Materials Project: A materials genome approach to accelerating materials innovation. APL 
Materials. 1, 011002. (https://doi.org/10.1063/1.4812323).

274   Curtarolo et. al. 2012 AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab-initio 
calculations. Computational Materials Science. 58, 227-235. (https://doi.org/10.1016/j.commatsci.2012.02.002).

275   Physical Sciences Data-Science Service. ICSD. See https://www.psds.ac.uk/icsd (accessed 14 July 2023).

276   Zakutayev et. al. 2018 An open experimental database for exploring inorganic materials. Scientific Data. 5, 180053. 
(https://doi.org/10.1038/sdata.2018.53).

277   Draxl C, Scheffler M. 2019 The NOMAD laboratory: from data sharing to artificial intelligence. Journal of Physics: 
Materials. 2, 036001. (https://doi.org/10.1088/2515-7639/ab13bb).

278   ChemML. See https://hachmannlab.github.io/chemml/ (accessed 14 July 2023).

279   Atomate. See https://atomate.org/ (accessed 14 July 2023).

280   DeCost et. al. 2020 Scientific AI in materials science: a path to a sustainable and scalable paradigm.  
Machine Learning: Science and Technology. 1, 033001. (https://doi.org/10.1088/2632-2153/ab9a20).

281   Raabe D, Mianroodi J, Neugebauer J. 2023 Accelerating the design of compositionally complex materials  
via physics-informed artificial intelligence. Nature Computational Science. 3, 198-209.  
(https://doi.org/10.1038/s43588-023-00412-7)

There have been several success stories in 
recent years of ML being used for materials 
discovery, some examples of which are listed 
in Table 2. A variety of ML and AI techniques, 
including generative AI, have been used to 
identify materials with desired properties for 
a wide range of applications. These have 
been integrated with established techniques 
such as DFT, stability calculations and 
experiments to narrow down the predicted 
materials280. Sustainability of proposed 
materials could also be used as an objective 
for predictive models281, to prevent new, more 
complex materials being harder to recycle or 
dispose of safely.
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CHAPTER THREE

TABLE 2

Examples of machine learning in materials discovery

282   Lyngby P, Sommer Thygesen K. 2022. Data-driven discovery of 2D materials by deep generative models. npj 
Computational Materials. 8, 232. (https://doi.org/10.1038/s41524-022-00923-3).

283   Rao et. al. 2022 Machine learning-enabled high-entropy alloy discovery. Science. 378, 78-85.  
(https://doi.org/10.1126/science.abo4940).

284   Vasylenko et. al. 2021 Element selection for crystalline inorganic solid discovery guided by unsupervised machine 
learning of experimentally explored chemistry. Nature Communications. 12, 5561. (https://doi.org/10.1038/s41467-021-
25343-7).

285   Sun et. al. 2019. Machine learning-assisted molecular design and efficiency prediction for high-performance organic 
photovoltaic materials. Science Advances. 5, 11. (https://doi.org/10.1126/sciadv.aay4275).

286   Stanev et. al. 2018. Machine learning modelling of superconducting critical temperature. npj Computational 
Materials. 4, 29. (https://doi.org/10.1038/s41524-018-0085-8).

Researchers Result

Lyngby et. al.282 Predicted 11,630 new, stable 2D materials.

Yao et. al.283 Found 2 new ‘invar alloys’ which have a low thermal expansion  
and can be useful for several applications.

Vasylenko et. al.284 Identified 4 new materials, including materials that have desirable 
properties for use in solid state batteries. 

Sun et. al.285 An approach for pre-screening for new organic photovoltaic materials.

Stanev et. al.286 Identified >30 potential high-temperature superconducting materials.

https://doi.org/10.1038/s41524-022-00923-3
https://doi.org/10.1126/science.abo4940
https://doi.org/10.1038/s41467-021-25343-7
https://doi.org/10.1038/s41467-021-25343-7
https://doi.org/10.1126/sciadv.aay4275
https://doi.org/10.1038/s41524-018-0085-8
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Automated experimentation
Another important application of AI in materials 
is for automated experimentation (AE). The 
central idea is to integrate AI and robotics in 
a closed experimental loop, whereby an AE 
system can undergo an iterative experimental 
process based on prior knowledge, improving 
the output after each iteration287. There is 
human intervention to initialise the experiment 
and define the objectives.
 
Increased adoption of AE systems in labs 
would have a significant impact on materials 
design and experimentation. Firstly, it would 
increase the speed of research at a reduced 
per-experiment cost288. This would free up 
scientists to work on other tasks, rather 
than focusing on routine, time-consuming 
experiments, and would also enable faster 
development and commercialisation of 
technologically relevant materials289. A global 
network of integrated AE systems would 
increase the accessibility of materials science 
research, opening advanced techniques to 
research groups with fewer resources. 

287   Stach et. al. 2021 Autonomous experimentation systems for materials development: A community perspective. 
Matter. 4, 2702-2726. (https://doi.org/10.1016/j.matt.2021.06.036).

288   Stein H, Gregoire J. 2019 Progress and prospects for accelerating materials science with automated and 
autonomous workflows. Chemical Science. 10, 9640. (https://doi.org/10.1039%2Fc9sc03766g)

289   Maruyama et. al. 2023 Artificial intelligence for materials research at extremes. MRS Bulletin. 47, 1154-1164.  
(https://doi.org/10.1557/s43577-022-00466-4).

290  Nikolaev et. al. 2016 Autonomy in materials research: a case study in carbon nanotube growth. npj Computational 
Materials. 2, 16031. (https://doi.org/10.1038/npjcompumats.2016.31).

291   De Volder M, Tawfick S, Baughman R, Hart J. 2013 Carbon Nanotubes: Present and Future Commercial Applications. 
Science. 339, 535-539. (https://doi.org/10.1126/science.1222453).

Although AE technologies exist and are being 
used for materials research, there are several 
barriers which need to be addressed prior to 
wider spread adoption. Firstly, experimental 
hardware and software improvements would 
be needed, including non-proprietary interfaces 
and tools for effective characterisation of 
samples. Collaborative partnerships between 
materials scientists and AI experts would be 
beneficial, as well as an understanding that 
human involvement will be necessary where 
there are safety or ethical concerns. Finally, AE 
systems would need access to a broad range of 
data, including metadata and negative results, 
to supply to the system as pre-knowledge, 
requiring standardisation of data management 
and sharing. 

There are several examples of AE systems 
being successfully used for materials research. 
One such example is the 2016 demonstration 
by Nikolaev et al290. of the first use of the 
Autonomous Research System to optimise 
the growth of carbon nanotubes, a material 
which has potential uses in carbon capture 
technologies as well as an astounding array 
of current applications291. However, carbon 
nanotubes are expensive; the price depends 
on configuration and quality, but 1 gram 
retails from around £100 to more than £1200. 
AE can be used to improve the growth of 
carbon nanotubes by rapidly iterating growth 
parameters for property optimisations and 
greater yields.
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Research, innovation  
and the private sector 

292   Penn J. 2024. Historical review on the role of disruptive technologies in transforming science and society.  
The Royal Society. See https://royalsociety.org/news-resources/projects/science-in-the-age-of-ai/

293   Gofman M, Jin Z. 2022 Artificial Intelligence, Education, and Entrepreneurship. Journal of Finance, Forthcoming. 
(https://doi.org/10.1111/jofi.13302)

294   Ibid.

295   Penn J. 2024. Historical review on the role of disruptive technologies in transforming science and society.  
The Royal Society. See https://royalsociety.org/news-resources/projects/science-in-the-age-of-ai/

296   Microsoft. Microsoft Research. AI4Science. See  https://www.microsoft.com/en-us/research/lab/microsoft-research-
ai4science/ (accessed 21 December 2023)

297   Kak A, Myers West S, Whittaker M. 2023 Opinion: Make no mistake – AI is owned by Big Tech. MIT Technology 
Review. See https://www.technologyreview.com/2023/12/05/1084393/make-no-mistake-ai-is-owned-by-big-tech/. 
(accessed 21 December 2023)

The large investment in AI by the private 
sector and its significance in scientific 
research present various implications. These 
include the centralisation of critical digital 
infrastructure292; the attraction of talent away 
from academia to the private sector293; and 
challenges to open science294.

The influence of the private sector in 
the development of AI for science is not 
extraordinary. Historically, the automation 
of tasks has been driven by industry actors 
in the pursuit of reduced labour costs and 
greater scalability295. Today, the private 
sector continues to play a prominent role 
in advancing scientific research, with many 
companies having AI-driven scientific 
programmes such as Alphabet’s Google 
DeepMind and Microsoft’s AI for Science296. 

The role of the private sector in science 
is also expanding as many companies 
contribute to provisioning essential 
resources like computational power, data 
access and novel AI technologies to the 
wider research community297. 

This chapter examines the growing role of 
the private sector in science, drawing on a 
commissioned review of the global AI patent 
landscape, which describes the distribution 
of ownership, development and impact of AI 
technologies. It also gathers perspectives from 
a horizon-scanning workshop on AI security 
risks and a commissioned historical review. 

https://royalsociety.org/news-resources/projects/science-in-the-age-of-ai/
https://doi.org/10.1111/jofi.13302
https://royalsociety.org/news-resources/projects/science-in-the-age-of-ai/
https://www.microsoft.com/en-us/research/lab/microsoft-research-ai4science/
https://www.microsoft.com/en-us/research/lab/microsoft-research-ai4science/
https://www.technologyreview.com/2023/12/05/1084393/make-no-mistake-ai-is-owned-by-big-tech/
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The changing landscape of AI technologies 
in scientific research 
Public and private sector investment in AI 
for scientific advancement is increasing298. 
For instance, the UK Government, through 
UKRI, committed £54 million to universities 
across the country to support responsible AI 
development and fund AI-based research 
projects and a further £50 million to accelerate 
research ventures with industry and the third 
sector299. However, in 2023, Microsoft invested 
over £8 billion into OpenAI300 and Meta 
pledged around £26.5 billion in expanding 
their ‘AI capacity’301. It is estimated that, in 
2022, the private sector accounts for 67% 
of AI investment in the EU, with the public 
sector contributing 33%302.

298   IP Pragmatics, 2024 Artificial intelligence related inventions. The Royal Society. See https://royalsociety.org/news-
resources/projects/science-in-the-age-of-ai/

299   £54 million boost to develop secure and trustworthy AI research. Gov.UK. See https://www.gov.uk/government/
news/54-million-boost-to-develop-secure-and-trustworthy-ai-research (accessed 21 December 2023)

300   Bass D. 2023 Microsoft invests $10 billion in ChatGPT maker OpenAI. Bloomberg. 23 January 2023.  
See https://www.bloomberg.com/news/articles/2023-01-23/microsoft-makes-multibillion-dollar-investment-in-openai 
(accessed 21 December 2023).

301   Targett E. 2023 Meta to spend up to $33 billion on AI, as Zuckerberg pledges open approach to LLMs. The Stack. 
27 April 2023. See https://www.thestack.technology/meta-ai-investment/ (accessed 21 December 2023).

302   Ibid.

303   Intellectual property and your work. Gov.UK. See: https://www.gov.uk/intellectual-property-an-overview  
(accessed March 22 2024)

One method of understanding the changing 
landscape of AI technologies in scientific 
research is by looking at intellectual property 
(IP) trends. IP refers to creations of the mind, 
such as inventions, designs, or literacy 
and artistic work. IP law includes copyright, 
trademark, trade secrets and patents which 
grant exclusive rights to inventors or assignees 
for a limited time in exchange for public 
disclosure of the invention303. This section 
primarily draws on patent trends (See Box 4) 
and addresses the changing landscape of AI 
technologies in scientific research.

https://royalsociety.org/news-resources/projects/science-in-the-age-of-ai/
https://royalsociety.org/news-resources/projects/science-in-the-age-of-ai/
https://www.gov.uk/government/news/54-million-boost-to-develop-secure-and-trustworthy-ai-research
https://www.gov.uk/government/news/54-million-boost-to-develop-secure-and-trustworthy-ai-research
https://www.bloomberg.com/news/articles/2023-01-23/microsoft-makes-multibillion-dollar-investment-in-openai
https://www.thestack.technology/meta-ai-investment/
https://www.gov.uk/intellectual-property-an-overview
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BOX 4

IP Pragmatics 2023: Global patent landscape analysis 

304   IP Pragmatics, 2024 Artificial intelligence related inventions. The Royal Society.  
See https://royalsociety.org/news-resources/projects/science-in-the-age-of-ai/

305   Ibid.

The Royal Society commissioned a 
global patent landscape review on AI 
technology patents for scientific research. 
The analysis assessed the ownership, 
development, and impact of AI patents 
among countries, organisations, and 
industries in the past 10 years. It also 
identified key players, trends, and potential 
implications for the scientific community. 

This analysis defined AI as the study in 
computer science aimed at developing 
machines and systems that can carry 
out tasks considered to require human 
intelligence, such as ML or ANNs. Key 
search terms and relevant International 
Patent Classification (IPC) codes were 
used to identify AI-related patents 
comprehensively (see IP Pragmatics 
report for more information)304.

While patent landscape reviews can 
provide useful findings, there are limitations. 
Obtaining complete global patent data can 
be challenging, and the analysis may present 
an incomplete picture due to limitations in 
data availability or accessibility. While delay 
times may vary between jurisdictions by 
a few months, there is an 18-month delay 
between priority application and patent 
publication in most of the main global 
territories. This means that data in this 
review from 2021 – 2023 is incomplete305. 

Additionally, patent data alone does not 
capture the full extent of AI research and 
development, as some innovations may 
not be patented or may be protected 
through other IP laws including copyright, 
trade secrets and trademarks.

https://royalsociety.org/news-resources/projects/science-in-the-age-of-ai/
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1. Growth in the AI patent landscape 
The AI patent landscape has surged in the 
past decade, with approximately 74% of 
the total patent filings occurring in the last 
five years306 (see Figure 2). In 2022, the 
market value reached £109.718 billion, with 
a projected compound annual growth rate 
(CAGR) of 37.3% from 2023 to 2030307.

306   Ibid.

307   Grand View Research. See https://www.grandviewresearch.com/industry-analysis/artificial-intelligence-ai-market# 
(Accessed 21 December 2023) 

308   IP Pragmatics, 2024 Artificial intelligence related inventions. The Royal Society.  
See https://royalsociety.org/news-resources/projects/science-in-the-age-of-ai/

309    Nair M, Sethumadhaven A. 2022 AI in healthcare: India’s trillion-dollar opportunity. World Economic Forum.  
See https://www.weforum.org/agenda/2022/10/ai-in-healthcare-india-trillion-dollar (accessed 21 December 2023)

310   Olcott E. 2022, China sets the pace in adoption of AI in healthcare technology. Financial Times. 31 January 2022. 
See: https://www.ft.com/content/c1fe6fbf-8a87-4328-9e75-816009a07a59 (accessed 21 December 2023)

Notably, China leads in AI patent filings, 
holding approximately 62% of the landscape, 
followed by the United States with around 
13.2%308.  The Asia-Pacific region is projected 
to have the highest CAGR (48.6%) between 
2022 and 2027, in comparison to the US (43%) 
and Europe (46.5%). This finding complements 
the reported increase in AI innovation in the 
healthcare industry in China and India309,310. 

FIGURE 2

Patent filing trends of AI-related technological inventions in the last 10 years

(Data for 2021 – 2023 is not complete given the 18-month delay from the priority filing date and the date of publication).
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2. Global market shares in AI for science  
The use of AI in the science and 
engineering market is being driven primarily 
by the demand for AI technology to drive 
innovation and economic growth. As such, 
there is a correlation between patent filing 
trends and global market shares311. 

311   BBC Research. 2022 Global Markets for Machine Learning in the Life Sciences. October 2022.  
See https://www.bccresearch.com/market-research/healthcare/global-markets-for-machine-learning-in-life-sciences.
html (accessed 21 December 2023)

312   Ibid.

313   Ibid.

North America, with its rich concentration of 
technology firms and skilled professionals, 
dominates this market312. In Europe, Germany 
leads, but the United Kingdom stands out 
with a significant 14.7% share in the AI for life 
sciences market and has the region’s highest 
forecasted CAGR of 47.9%313.

FIGURE 3

Global distribution of the number of AI-related patent families by 1st priority country 
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FIGURE 3

Global distribution of the number of AI-related patent families by 1st priority country 
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The UK, ranking 10th globally and 2nd in 
Europe for patent filings, demonstrates strong 
growth potential314. The UK Intellectual Property 
Office (UKIPO) adopts a more patentee-friendly 
approach to examining computer-implemented 
and AI inventions compared to the European 
Patent Office (EPO), as underscored by recent 
decisions like Emotional Perception AI vs 
Comptroller General of Patents315. 

314   IP Pragmatics. 2024 Artificial intelligence related inventions. The Royal Society.  
See https://royalsociety.org/news-resources/projects/science-in-the-age-of-ai/

315   Emotional perception ai ltd v comptroller-general of patents, designs and trademarks. 2023. Find case law –  
The National Archives. See https://caselaw.nationalarchives.gov.uk/ewhc/ch/2023/29482948  
(accessed 4 March 2024). 

316   Examination of patent applications involving Artificial Neural Networks (ANN). Gov.UK.  
See https://www.gov.uk/government/publications/examination-of-patent-applications-involving-artificial-neural-
networks/examination-of-patent-applications-involving-artificial-neural-networks-ann (accessed 4 March 2024). 

This case led to an adjustment in UKIPO’s 
examination practices, removing specific 
guidance on ANNs316. While this decision has 
been appealed and currently awaits review, 
recent rulings have reinforced the UK’s 
position as a preferred region for AI-related  
IP protection, bolstering its role as a key  
player in AI innovation. 

FIGURE 4

Global Market Shares of Machine Learning in the Life Sciences,  
by Region, 2021 (%)

Source: BCC Research.
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However, the global landscape is marred by 
disparities. The costly and intricate patent 
application processes, particularly in regions 
like Africa, pose considerable barriers. 
For example, patenting in Africa through 
the African Regional Intellectual Property 
Organisation costs over £29,000, significantly 
higher than in the UK, priced at around £1,900. 

317   Lewis J, Schneegans S, Straza T. 2021 UNESCO Science Report: The race against time for smarter development. 
UNESCO Publishing. See: https://unesdoc.unesco.org/ark:/48223/pf0000377250 (accessed 22 March 2024)

318   Ibid.

Despite a surge in African tech hubs, high IP 
registration expenses and lack of a unified 
system hamper patenting317. Initiatives like the 
Pan-African Intellectual Property Organisation 
aim to address these challenges, although 
they currently face operational delays318.

FIGURE 5

European Market Shares of Machine Learning in the Life Sciences,  
by Country, 2021 (%) 

Source: BCC Research.
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3. Key players in the AI for Science 
patent landscape 
In terms of technological impact (indicated 
by the number of times that a patent 
is cited by a later patent or forward 
citations) the US stands out for having 
valuable patents. Comparatively, despite 
India’s significant growth in AI patent 
filings, it has not yet achieved large 
technological impact. While the UK, though 
representing a smaller portion of the patent 
landscape, demonstrates research and 
innovation influence, ranking among the 
highest globally319. 

The analysis of the top 20 assignees in 
AI-related patents underscores the active 
involvement of both industry and academic 
entities within the broader scientific and 
engineering research sphere. Notably, 
companies such as Canon, Alphabet, 
Siemens, IBM, and Samsung have emerged 
as key contributors, with substantial patent 
portfolios that wield considerable influence 
across scientific and engineering domains. 
Despite the dominance of commercial 
entities in most regions, academic 
institutions including the University of Oxford, 
Imperial College London, and University of 
Cambridge feature prominently among the 
top patent filers in the UK 320, suggesting 
blend of academic-industry collaboration 
and independent contributions321.

319   IP Pragmatics. 2024 Artificial intelligence related inventions. The Royal Society.  
See https://royalsociety.org/news-resources/projects/science-in-the-age-of-ai/

320  Ibid.

321   Legislation.Gov.UK. Copyright, Designs and Patents Act 1988. See: https://www.legislation.gov.uk/ukpga/1988/48/contents 

322   Royal Society and Department for Science, Innovation and Technology workshop on horizon scanning AI safety 
risks across scientific disciplines, October 2023. See https://royalsociety.org/current-topics/ai-data/  
(accessed 7 May 2024)

323   Kak A, Myers West S, Whittaker M. 2023 Opinion: Make no mistake – AI is owned by Big Tech. MIT Technology 
Review. 5 December 2023 See https://www.technologyreview.com/2023/12/05/1084393/make-no-mistake-ai-is-
owned-by-big-tech/. (accessed 21 December 2023)

Challenges related to the role of the private 
sector in AI-based science 
In addition to looking at patenting trends, 
the Royal Society explored the challenges of 
private sector involvement in AI-based scientific 
research. Ahead of the Global AI Safety Summit 
hosted by the United Kingdom in 2023, the 
Royal Society and the UK’s Department for 
Science, Innovation and Technology (DSIT) 
convened a horizon scanning workshop on 
the safety risks of AI in scientific research322.  
Challenges identified include:

1. Private sector dominance and centralisation 
of AI-based science development
Centralisation of AI development under 
large technology firms (eg Google, Microsoft, 
Amazon, Meta and Alibaba) could lead to 
corporate dominance over infrastructure 
critical for scientific progress. This includes 
ownership over massive datasets for training 
AI models, vast computing infrastructures, 
and top AI talent323. 

Centralisation can limit wider participation 
in steering the AI research agenda and can 
restrict a small number of decision-makers 
to shape what research is conducted and 
published from influential industrial labs. For 
instance, the high-profile and controversial 
dismissal of AI researcher Dr Timnit Gebru 
from Google highlighted the opaque 
internal decision-making in private sector 
research units. 

https://royalsociety.org/news-resources/projects/science-in-the-age-of-ai/
https://www.legislation.gov.uk/ukpga/1988/48/contents
https://royalsociety.org/current-topics/ai-data/
https://www.technologyreview.com/2023/12/05/1084393/make-no-mistake-ai-is-owned-by-big-tech/
https://www.technologyreview.com/2023/12/05/1084393/make-no-mistake-ai-is-owned-by-big-tech/


CHAPTER FOUR

SCIENCE IN THE AGE OF AI 73

This is an example of a misalignment 
between corporate interest to protect their 
market advantage and academic values 
to openly scrutinise the societal impact of 
advancing technology324. 

2. Overreliance on industry-driven tools 
and benchmarks for AI-based science
Industry’s growing influence in setting 
key benchmarks325, developing cutting-
edge models326, and steering academic 
publications327 is centralising control over 
AI ecosystems, encompassing hardware, 
software, and data328. 

324   Hao K. 2020 We read the paper that forced Timnit Gebru out of Google. Here’s what it says. MIT Technology 
Review. 4 December 2020. See https://www.technologyreview.com/2020/12/04/1013294/google-ai-ethics-research-
paper-forced-out-timnit-gebru/ (accessed 12 July 2023) 

325   Hodak, M., Ellison, D., & Dholakia, A. (2020, August). Benchmarking AI inference: where we are in 2020. In 
Technology Conference on Performance Evaluation and Benchmarking (pp. 93-102). Cham: Springer International 
Publishing.

326   Ibid.

327   Ahmed N, Wahed M, Thompson, N. C. 2023. The growing influence of industry in AI research. Science, 379(6635), 
884-886. (https://doi: 10.1126/science.ade2420)

328   The Royal Society interviews with scientists and researchers. 2022 - 2023

329   Penn J. 2024. Historical review on the role of disruptive technologies in transforming science and society.  
The Royal Society. See https://royalsociety.org/news-resources/projects/science-in-the-age-of-ai/

330   Westgarth, T., Chen, W., Hay, G., & Heath, R. 2022 Understanding UK Artificial Intelligence R&D commercialisation 
and the role of standards. See https://oxfordinsights.com/wp-content/uploads/2023/10/DCMS_and_OAI_-_
Understanding_UK_Artificial_Intelligence_R_D_commercialisation__accessible-1.pdf (accessed 21 December 2023)

The patent system wields substantial 
influence over markets, stimulating 
competition and growth in all sectors. 
Through this system, patent proprietors 
can ensure investment return and control 
of technology dissemination. However, 
without oversight, there is a risk that these 
entities will prioritise commercial interests 
over broader scientific advancement, 
controlling critical infrastructure, 
databases, and algorithms to maintain 
their market dominance329. 

The concentration of power and resources 
could not only hinder competition and 
transparency but also establish single 
points of failure, raising concerns about 
the resilience and openness of AI-based 
scientific research330.   

https://royalsociety.org/news-resources/projects/science-in-the-age-of-ai/
https://oxfordinsights.com/wp-content/uploads/2023/10/DCMS_and_OAI_-_Understanding_UK_Artificial_Intelligence_R_D_commercialisation__accessible-1.pdf
https://oxfordinsights.com/wp-content/uploads/2023/10/DCMS_and_OAI_-_Understanding_UK_Artificial_Intelligence_R_D_commercialisation__accessible-1.pdf
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BOX 5

The role of the private sector in patenting medicine  
and pharmaceutical inventions

331   IP Pragmatics. 2024 Artificial intelligence related inventions. The Royal Society. See https://royalsociety.org/news-
resources/projects/science-in-the-age-of-ai/

332   Google DeepMind. Technology: AlphaFold. See https://deepmind.google/technologies/alphafold/  
(accessed 21 December 2023)

333   Borkakoti N, Thornton J.M., 2023. AlphaFold2 protein structure prediction: Implications for drug discovery.  
Current opinion in structural biology, 78, p.102526 (https://doi.org/10.1016/j.sbi.2022.102526)

334   Jumper, J., et al. 2021 Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), pp.583-589.
(doi: 10.1038/s41586-021-03819-2)

335   IP Pragmatics. 2024 Artificial intelligence related inventions. The Royal Society. See https://royalsociety.org/news-
resources/projects/science-in-the-age-of-ai/

336   Ibid.

An analysis of AI patents in medicine and 
pharmaceutical interventions shows that 
while Harvard University and Massachusetts 
Institute of Technology (MIT) were pioneers 
in this area, patent portfolios held by Roche 
and IBM appear to be most valuable in 
this sector331. Alphabet has expanded its 
influence through subsidiaries like Google 
DeepMind, which developed AlphaFold 
– an AI system that has revolutionised 
protein structure prediction332. This 
innovation marks a significant shift in the 
medical patent landscape333,334, prompting 
other technology giants like Microsoft, 
to invest in similar technologies. This 
highlights the commercial potential and 
competitive dynamics in this sector335. 

However, Alphabet’s strategy of filing 
cluster of patents, considered ‘patent  
ring-fencing’, suggests a broader trend  
of firms leveraging their IP to safeguard  
and expand their market position336.  
Such approaches not only protect against 
infringement but also prevent competitors 
from developing adjacent technologies, 
reinforcing Alphabet’s – and by extension, 
Google DeepMind’s –  dominance 
in AI-driven medical research.

 

https://royalsociety.org/news-resources/projects/science-in-the-age-of-ai/
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https://doi.org/10.1016/j.sbi.2022.102526
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3. The private sector and open science 
The commercial incentives driving private 
ownership of data for AI-based research 
could restrict open science practices. 
This limits non-industry scientists’ 
ability to equitably contribute to and 
scrutinise data for AI systems alongside 
industry counterparts.

Privately held data is often commercially 
sensitive and could necessitate non-
disclosure agreements, potentially affecting 
research integrity. Data considered low risk 
initially may later gain commercial value and 
get withdrawn, as seen with some social 
media companies tightening data access 
following the surge of LLMs training on 
public data337,338. 

Alternative monetisation approaches 
like encouraging the licensing of data 
lakes and utilising database provisions 
can provide a more open and pragmatic 
approach to data sharing339. 

337   Isaac M. 2023 Reddit wants to get paid for helping to teach big AI systems. The New York Times. 18 April 2023.  
See https://www.nytimes.com/2023/04/18/technology/reddit-ai-openai-google.html (accessed 21 December 2023).

338   Murphy H. 2023 Elon Musk rolls out paywall for Twitter’s data. The Financial Times. 29 April 2023.  
See https://www.ft.com/content/574a9f82-580c-4690-be35-37130fba2711 (accessed 21 December 2023).

339   Grossman R L. 2019 Data lakes, clouds, and commons: A review of platforms for analyzing and sharing genomic 
data. Trends in Genetics, 35(3), pp.223-234. (https://doi.org/10.1016/j.tig.2018.12.006)

340   European Commission. The Digital Services Act. See https://commission.europa.eu/strategy-and-policy/
priorities-2019-2024/europe-fit-digital-age/digital-services-act_en (accessed 5 February 2024)

341   Department for Science, Innovation and Technology. National Data Strategy. 5 December 2022.  
See https://www.gov.uk/guidance/national-data-strategy (accessed 5 February 2024)

342   The Royal Society. 2023 From privacy to partnership. See https://royalsociety.org/topics-policy/projects/privacy-
enhancing-technologies/ (accessed 21 December 2023).

343   European Commission. Directive on measures for a high common level of cybersecurity across the Union (NIS2 
Directive). See https://digital-strategy.ec.europa.eu/en/policies/nis2-directive (accessed 22 February 2024)

344   Siemens. 2024 Siemens and Microsoft partner to drive cross-industry AI adoption. See https://press.siemens.com/
global/en/pressrelease/siemens-and-microsoft-partner-drive-cross-industry-ai-adoption (accessed 26 February 2024)

345   UNESCO Recommendation on Open Science. 2021. See: https://www.unesco.org/en/legal-affairs/recommendation-
open-science  (accessed 6 February 2024)

Further approaches include changes to 
legislation such as the requirements for 
social media companies to share data in 
the European Digital Services Act340 and 
the principles for intervention to unlock the 
value of data across the economy in the 
UK’s National Data Strategy341. Additionally, 
technical approaches include privacy 
enhancing technologies342 and cyber-
security legislation to provide legal measures 
and ensure safer hardware and software343. 

Open-source code and platforms do also 
offer some advantages to private sector 
organisations, including speed and cost-
effectiveness, but also have significant 
limitations including lack of support, security 
risks, and compatibility. For example, 
industrial partnerships for mutual benefits, 
such as the partnership between Siemens 
and Microsoft, can drive cross-industry AI 
adoption by sharing software, hardware and 
talent344. During the COVID-19 pandemic, 
some private organisations relinquished 
patent rights for the common good, with 
leading technology companies donating 
their patents to open-source initiatives345.

https://www.nytimes.com/2023/04/18/technology/reddit-ai-openai-google.html
https://www.ft.com/content/574a9f82-580c-4690-be35-37130fba2711
https://doi.org/10.1016/j.tig.2018.12.006
https://www.gov.uk/guidance/national-data-strategy
https://royalsociety.org/topics-policy/projects/privacy-enhancing-technologies/
https://royalsociety.org/topics-policy/projects/privacy-enhancing-technologies/
https://digital-strategy.ec.europa.eu/en/policies/nis2-directive
https://press.siemens.com/global/en/pressrelease/siemens-and-microsoft-partner-drive-cross-industry-ai-adoption
https://press.siemens.com/global/en/pressrelease/siemens-and-microsoft-partner-drive-cross-industry-ai-adoption
https://www.unesco.org/en/legal-affairs/recommendation-open-science
https://www.unesco.org/en/legal-affairs/recommendation-open-science
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4. The private sector’s role in AI safety
Private sector dominance in AI for science 
also poses challenges to AI safety. 
Organisations and institutions leading AI 
development often determine their own 
ability to assess harm, establish safeguards, 
and safely release their models. As 
described by OpenAI in the paper behind 
the release of GPT-4, commercial incentives 
and safety considerations can come into 
tension with scientific values such as 
transparency and open science practices346.  

Hugging Face, an open-source organisation, 
suggests evaluating the trade-offs for safe 
and responsible release as illustrated in the 
Gradient of System Access347 (see Figure 6). 
Similar frameworks can be considered 
and developed by scientific communities 
to assess the conditions under which 
releasing training data is safe, allowing them 
to contribute to scientific progress while 
reducing potential for harm and misuse. 

346   OpenAI et al. 2023 Gpt-4 technical report. arxiv 2303.08774. View in Article, 2, p.13. (https://doi.org/10.48550/
arXiv.2303.08774)

347   Solaiman, I. 2023 The gradient of generative AI release: Methods and considerations. In Proceedings of the 
2023 ACM Conference on Fairness, Accountability, and Transparency (pp. 111-122). (https://doi.org/10.48550/
arXiv.2302.04844)

348   Gov.UK. 2024 Introducing the AI Safety Institute. See https://www.gov.uk/government/publications/ai-safety-institute-
overview/introducing-the-ai-safety-institute )(accessed 26 February 2024)

349   NIST. 2024 U.S. Artificial Intelligence Safety Institute. See https://www.nist.gov/artificial-intelligence/artificial-
intelligence-safety-institute (accessed 26 February 2024)

Universities can also play a crucial role 
in advancing AI safety, by promoting 
ethical research standards or incentivising 
academic research on AI harms. However, 
they do not have the same capabilities as 
large technology companies to institute 
robust safeguards and best practices across 
all aspects of complex AI development. 
Recently, national governments have been 
placing greater significance on AI safety 
discussions. Since the Global AI Safety 
Summit in November 2023, the UK has 
launched the AI Safety Institute348 while the 
US announced the US AI Safety Institute 
under the National Institute of Standards 
and Technology (NIST)349. 

https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2302.04844
https://doi.org/10.48550/arXiv.2302.04844
https://www.gov.uk/government/publications/ai-safety-institute-overview/introducing-the-ai-safety-institute
https://www.gov.uk/government/publications/ai-safety-institute-overview/introducing-the-ai-safety-institute
https://www.nist.gov/artificial-intelligence/artificial-intelligence-safety-institute
https://www.nist.gov/artificial-intelligence/artificial-intelligence-safety-institute
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FIGURE 6

Reproduction of the Gradient of System Access developed by Hugging Face

350   Solaiman, I. 2023 The gradient of generative AI release: Methods and considerations. In Proceedings of the 2023 ACM Conference on Fairness, 
Accountability, and Transparency (pp. 111-122). (https://doi.org/10.48550/arXiv.2302.04844)

Source: Hugging Face350.
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Opportunities for cross-sector collaboration
Cross-sector collaboration offers significant 
opportunities, leveraging the innovative and 
educational strengths of academia with the 
resources and practical focus of industry351. 
Despite concerns about the patent system 
centralising AI development, it can also foster 
collaboration. Published patent applications 
enhance technological transparency and 
provide a revenue stream that can support joint 
ventures between universities and industry. 

However, the increasing presence of the 
private sector in AI-based science funding 
raises concerns that industry’s influence might 
shift the focus from fundamental research to 
applied science352. This shift could exacerbate 
the ‘brain drain’353, where a significant flow 
of AI talent leaves academia for the private 
sector354, driven by higher salaries, advanced 
resources and the opportunity to work on 
practical applications355. 

351   Wright B et al. 2014 Technology transfer: Industry-funded academic inventions boost innovation. Nature 507, 
297–299. https://doi.org/10.1038/507297a

352   Ibid.

353   Kunze L. 2019. Can we stop the academic AI brain drain? KI-Künstliche Intelligenz, 33(1), 1-3. (https://doi.org/10.1007/
s13218-019-00577-2)

354   Gofman M, Jin Z. 2022 Artificial Intelligence, Education, and Entrepreneurship. Journal of Finance, Forthcoming. 
(https://doi.org/10.1111/jofi.13302)

355   UK universities alarmed by poaching of top computer science brains. Financial Times. 9 May 2018.  
See https://www.ft.com/content/895caede-4fad-11e8-a7a9-37318e776bab (accessed 10 June 2023)

356   Life sciences companies supercharged with £277 million in government and private investment. Gov.UK  
See https://www.gov.uk/government/news/life-sciences-companies-supercharged-with-277-million-in-government-
and-private-investment (accessed 26 February 2024)

357   Initial £100 million for expert taskforce to help UK build and adopt next generation of safe AI. Gov.UK  
See https://www.gov.uk/government/news/initial-100-million-for-expert-taskforce-to-help-uk-build-and-adopt-next-
generation-of-safe-ai (accessed 26 February 2023

358   Evans JA (2010) Industry induces academic science to know less about more. Am J Sociol 116(2):389–452

359   Perkmann M, Walsh K (2007) University–industry relationships and open innovation: towards a research agenda.  
Int J Manag Rev 9(4):259–280 (https://doi.org/10.1111/j.1468-2370.2007.00225.x)

360   Cohen WM, Nelson RR, Walsh JP. 2002 Links and impacts: the influence of public research on industrial R&D.  
Manag Sci 48(1):1–23.( https://doi.org/10.1287/mnsc.48.1.1.14273)

To counter this trend, initiatives like the UK’s 
Life Sciences Innovative Manufacturing Fund356 
(which includes £17 million in government 
funding and a private investment of £260 
million), demonstrate how government and 
private investments can synergistically support 
projects that drive innovation and economic 
growth357. This collaborative model not only 
fuels technological advancements but also 
offers a platform for academia to engage in 
cutting-edge research while benefitting from 
industry resources. 

Other partnerships could extend beyond 
financial aspects, encompassing joint research 
projects358, shared publications, and intellectual 
exchanges at conferences or through 
informal networks359. They also offer practical 
engagement opportunities like internships 
and sabbaticals, allowing academics to gain 
industry experience without departing from 
their academic roles360. 

“  The freedom, 
innovation and 
creativity of 
academia with 
the resource and 
structure and 
management 
of the private 
sector… it’s been 
completely 
liberating.”

  Royal Society 
interview participant 
referring to joint 
academic-industry roles

https://doi.org/10.1111/jofi.13302
https://www.ft.com/content/895caede-4fad-11e8-a7a9-37318e776bab
https://www.gov.uk/government/news/life-sciences-companies-supercharged-with-277-million-in-government-and-private-investment
https://www.gov.uk/government/news/life-sciences-companies-supercharged-with-277-million-in-government-and-private-investment
https://www.gov.uk/government/news/initial-100-million-for-expert-taskforce-to-help-uk-build-and-adopt-next-generation-of-safe-ai
https://www.gov.uk/government/news/initial-100-million-for-expert-taskforce-to-help-uk-build-and-adopt-next-generation-of-safe-ai
https://doi.org/10.1111/j.1468-2370.2007.00225.x
https://doi.org/10.1287/mnsc.48.1.1.14273
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To optimise the benefits of cross-sector 
collaboration, universities and research 
institutions can also develop robust IP policies, 
fostering an environment where innovation 
is protected and can be shared effectively 
with industry partners. By creating structured 
pathways for collaboration, such as joint 
patenting efforts or licensing agreements, 
both sectors can contribute to advancing AI 
research while addressing challenges like 
resource disparities and data privacy.
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Research ethics and AI safety 

364   Ghotbi N. 2024. Ethics of Artificial Intelligence in Academic Research and Education. In Second Handbook of 
Academic Integrity (pp. 1355-1366). (https://doi.org/10.1007/978-981-287-079-7_143-1)

365   Lomas N. 2023 UK court tosses class-action style health data misuse claim against Google Deepmind. Tech Crunch. 
19 May 2023. See https://techcrunch.com/2023/05/19/uk-court-tosses-class-action-style-health-data-misuse-claim-
against-google-deepmind (accessed 21 December 2023)

366   Brennan, J. 2023. AI assurance? Assessing and mitigating risks across the AI lifecycle. Ada Lovelace Institute. See 
https://www.adalovelaceinstitute.org/report/risks-ai-systems/  (accessed September 30 2023)

367   Urbina F, Lentzos F, Invernizzi C, Ekins S. 2022. Dual use of artificial-intelligence-powered drug discovery. Nature 
Machine Intelligence, 4(3), 189-191. (https://doi.org/10.1038/s42256-022-00465-9)

368   UK Parliament POST. 2024. Policy implications of artificial intelligence (AI). https://researchbriefings.files.parliament.
uk/documents/POST-PN-0708/POST-PN-0708.pdf 

369   Panch, T., Mattie, H. and Atun, R. 2019. Artificial intelligence and algorithmic bias: implications for health 
systems. Journal of global health, 9(2).

370   Celi, L.A et al,. 2022. Sources of bias in artificial intelligence that perpetuate healthcare disparities—A global 
review. PLOS Digital Health, 1(3), p.e0000022.

371   Royal Society and Department for Science, Innovation, and Technology workshop on horizon-scanning AI safety 
risks across scientific disciplines, 2023.

372   Checco A, Bracciale L, Loreti P, Pinfield S, Bianchi G. 2021 AI-assisted peer review. Humanities and Social Sciences 
Communications, 8(1), pp.1-11. (https://doi.org/10.1057/s41599-020-00703-8 )

373   The Royal Society roundtable on Large Language Models, July 2023

374   Checco A, Bracciale L, Loreti P, Pinfield S, Bianchi G. 2021 AI-assisted peer review. Humanities and Social Sciences 
Communications, 8(1), pp.1-11. (https://doi.org/10.1057/s41599-020-00703-8 )

375   Heaven D. 2022 AI peer reviewers unleashed to ease publishing grind. Nature. 22 November 2018.  
See https://www.nature.com/articles/d41586-018-07245-9 (accessed 27 March 2023)

As the use of AI expands across scientific 
disciplines, new ethical challenges are arising 
around the unintended or intended misuse 
of AI364. There is also a growing concern from 
the public regarding the fair and ethical use 
of their data365 and the extent to which AI-
based tools can propagate harmful biases, 
discrimination, and societal harms366. AI Safety 
risks also need to be considered as it has 
become easier to repurpose algorithms for 
malicious use367.

Ahead of the Global AI Safety Summit hosted 
by the United Kingdom in 2023, the Royal 
Society and the UK’s Department for Science, 
Innovation and Technology (DSIT) convened 
a horizon scanning workshop on AI safety. 
The following themes emerged as ethical 
challenges associated with the use of AI in 
scientific research:

1. Data and algorithmic bias 
AI systems can have biases embedded in 
them through training data and algorithmic 
design. When left unmitigated, algorithmic 
bias can lead to unfair outcomes and 
exacerbate inequalities368. The integration of 
AI in medicine has, for example, highlighted 
how algorithmic biases can lead to 
inaccurate medical diagnoses, inadequate 
treatment, and exacerbated healthcare 
disparities369,370. If data bias translates into 
the training data for AI models, there is a 
risk that models will not map well on to 
other communities371 (See Box 6).

Algorithmic harms can also manifest 
in the realm of funding and scholarly 
communication. AI tools are used to make 
initial screenings of grant and peer review 
processes less time intensive372. Among 
other applications, it can support reviewers 
in identifying false citations373, boost the 
quality of papers374 and reduce plagiarism375. 

“  We might not 
want to make 
some of the 
datasets available 
because of the 
ease of misuse. 
And that seems 
sort of the 
opposite of what 
we try to strive 
for as scientists. 
But we may want 
to think more 
about safety and 
security now.”

  The Royal Society

https://techcrunch.com/2023/05/19/uk-court-tosses-class-action-style-health-data-misuse-claim-against-google-deepmind
https://techcrunch.com/2023/05/19/uk-court-tosses-class-action-style-health-data-misuse-claim-against-google-deepmind
https://www.adalovelaceinstitute.org/report/risks-ai-systems/
https://researchbriefings.files.parliament.uk/documents/POST-PN-0708/POST-PN-0708.pdf
https://researchbriefings.files.parliament.uk/documents/POST-PN-0708/POST-PN-0708.pdf
https://www.nature.com/articles/d41586-018-07245-9
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While AI can contribute towards reducing 
“first-impression” bias by human reviewers, 
it can also reinforce pre-existing gender, 
language or institutional biases entrenched 
in training datasets376 which can harm 
career progression opportunities for 
underrepresented scholars377. Initiatives 
like the GRAIL project are exploring ethical 
principles and best practices for using AI in 
research funding and evaluation378.

 

BOX 6

Multilingual language models

The development of multilingual language 
models can contribute towards reducing 
biased outputs. For example, BLOOM 
(BigScience Language Open-science Open-
access Multilingual) is currently the largest 
open research language model developed 
with the objective of reducing harmful and 
biased outputs by training it on a smaller 
selection of higher-quality, multilingual text 
sources. BLOOM was developed by 1000 
researchers and trained on 46 different 
languages and 13 programming languages379. 
Training data is available, and the model has 
been developed under an ethical charter that 
centres values such as diversity, inclusivity, 
reproducibility; and aims to foster accessibility, 
multilingualism and interdisciplinarity380.

376   Checco A, Bracciale L, Loreti P, Pinfield S, Bianchi G. 2021 AI-assisted peer review. Humanities and Social Sciences 
Communications, 8(1), pp.1-11. (https://doi.org/10.1057/s41599-020-00703-8 )

377   Chawla, D.S. 2022, Should AI have a role in assessing research quality?. Nature. (DOI: 10.1038/d41586-022-03294-3)

378   Research on Research Institute. See https://researchonresearch.org/project/grail/ (accessed 5 January 2024)

379   Hugging Face. Documentation of BLOOM. See: https://huggingface.co/docs/transformers/model_doc/bloom 
(accessed 21 December 2023)

380   Hugging Face. BigScience Ethical Charter. See: https://bigscience.huggingface.co/blog/bigscience-ethical-charter 
(accessed 21 December 2023)

381   Wang H et al. 2023 Scientific discovery in the age of artificial intelligence. Nature, 620. 47-60. (https://doi.
org/10.1038/s41586-023-06221-2)

382   Bommasani et al. 2021. On the opportunities and risks of foundation models. See: https://crfm.stanford.edu/assets/
report.pdf (accessed March 21 2024)

383   Pan Y, Pan L, Chen W, Nakov P, Kan M Y, Wang W Y. 2023. On the Risk of Misinformation Pollution with Large 
Language Models. arXiv preprint (arXiv:2305.13661)

2. Hallucinations and AI-generated 
disinformation
The growing use of general-purpose 
or foundation models in science (eg 
generative AI and LLMs) brings about 
unique considerations around ethics and 
safety.  For example, while LLMs can be 
used to accelerate academic writing, they 
can also be used to intentionally generate 
scientific disinformation381. Increased 
public access to LLMs reduces barriers for 
malicious actors to generate convincing 
machine-created content that reduces the 
likelihood of human detection382 (see Box 1  
on the Royal Society’s red teaming exercise 
on scientific disinformation).

The use of LLMs in a scientific project, 
can also increase exposure to ‘hallucinations’ 
– which refers to the generation of 
convincing and realistic outputs which do 
not correspond to real-world inputs. Even 
when there is no malicious intent, general 
pre-trained transformer (GPT) technologies 
can fabricate facts, data and citations when 
responding to a prompt. The rapid surge of 
machine-generated disinformation online 
increases the risk that the next generation 
of models trained on web-scraped data 
will degrade in performance and absorb 
distortions and inaccuracies found in 
fabricated text and data383. 

https://doi.org/10.1038/d41586-022-03294-3
https://huggingface.co/docs/transformers/model_doc/bloom
https://bigscience.huggingface.co/blog/bigscience-ethical-charter
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For example, Meta’s LLM for science, 
Galactica, was trained on 48 million scientific 
articles, websites, textbooks, and other inputs 
to help researchers summarise the literature, 
generate academic papers, write scientific 
code and annotate data (eg, molecules and 
proteins). However, the demo was paused 
after three days of use. One of the largest 
risks posed by Galactica was how confidently 
it produced false information and the lack of 
guidelines to identify it384.
 
As with other forms of misinformation, 
hallucinations can erode public trust in 
science385. Methods for AI validation and 
disclosure, such as watermarking or content 
provenance technologies386, are being 
explored to enable the detection of AI-
generated content and mitigate potential 
harms caused by hallucinations387,as well 
as, to ensure public trust in emerging 
AI systems388.

3. Dual use of AI technologies developed 
for science 
The dual use of AI systems refers to situations 
in which a system developed for a specific 
use is then appropriated or modified for 
a different use. Malicious use refers to 
applications in which the intent is to cause 
harm389. Among the most prominent and 

384   MIT Review. Why Meta’s latest large language model survived only three days online 2022.  
See: https://www.technologyreview.com/2022/11/18/1063487/meta-large-language-model-ai-only-survived-three-
days-gpt-3-science/ (accessed September 30 2023)

385   Bontridder, N. and Poullet, Y., 2021. The role of artificial intelligence in disinformation. Data & Policy, 3, p.e32. 
(doi:10.1017/dap.2021.20)

386   The Royal Society. Generative AI, content provenance and a public service internet. See: https://royalsociety.org/
news-resources/publications/2023/digital-content-provenance-bbc/ 

387   Watermarking refers to techniques that can embed identification information into the original data, model, or content 
to indicate provenance or ownership.

388   Partnership on AI. PAI’s Responsible Practices for Synthetic Media. See: https://syntheticmedia.partnershiponai.
org/#read_the_framework (accessed 21 December 2023)

389   Ueno, H. 2023. Artificial Intelligence as Dual-Use Technology. In Fusion of Machine Learning Paradigms: Theory 
and Applications (pp. 7-32). Cham: Springer International Publishing. (https://doi.org/10.1007/978-3-031-22371-6_2)

390   Urbina F, Lentzos F, Invernizzi C, Ekins S. 2022. Dual use of artificial-intelligence-powered drug discovery. Nature 
Machine Intelligence, 4(3), 189-191. (https://doi.org/10.1038/s42256-022-00465-9)

391   Sohn R. 2022.AI Drug Discovery Systems Might Be Repurposed to Make Chemical Weapons, Researchers Warn. 
Scientific American [Internet]. 21 April 2022. See https://www.scientificamerican.com/article/ai-drug-discovery-
systems-might-be-repurposed-to-make-chemical-weapons-researchers-warn/ (accessed 21 December 2023)

documented examples of malicious use of AI,  
is the development of chemical and biological  
weapons using AI systems that have 
beneficial applications for scientific research. 

In 2020, the company Collaborations 
Pharmaceuticals, a biopharma company that 
builds ML models to assist drug discovery 
and the treatment of rare diseases, 
published results on what they have called 
a ‘teachable moment’ regarding the use 
of AI-powered drug discovery methods. 
Following an invitation from the Swiss 
Federal Institute for NBC (nuclear, biological, 
and chemical) protection, the company 
trained an AI-powered molecule generator 
used for drug discovery to generate toxic 
molecules within a specified threshold of 
toxicity390. Drawing from a public database, 
and in less than 6 hours, the model had 
generated 40,000 molecules. Many of these 
molecules were similar or more toxic than 
the nerve agent VX, a banned and highly 
toxic lethal chemical weapon. 

While the theoretical generation of toxic 
molecules does not imply their production 
is viable or feasible, the experiment shows 
how AI can speed up the process of 
creating hazardous substances, including 
lethal bioweapons391. The company has  

https://www.technologyreview.com/2022/11/18/1063487/meta-large-language-model-ai-only-survived-three-days-gpt-3-science/
https://www.technologyreview.com/2022/11/18/1063487/meta-large-language-model-ai-only-survived-three-days-gpt-3-science/
https://royalsociety.org/news-resources/publications/2023/digital-content-provenance-bbc/
https://royalsociety.org/news-resources/publications/2023/digital-content-provenance-bbc/
https://www.scientificamerican.com/article/ai-drug-discovery-systems-might-be-repurposed-to-make-chemical-weapons-researchers-warn/
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called for several actions to address 
security risks, as well as to monitor, address 
and limit malicious applications of AI models 
used in science392. 

4. Data poisoning and adversarial machine 
learning attacks
Measures to enhance AI safety in science 
need to consider the development 
of robust models that can withstand 
adversarial data-based attacks393. Training 
AI models on vast, and poorly curated 
datasets, creates vulnerabilities to instances 
of ‘data poisoning’, ‘false data injections’ or 
‘one-pixel’ attacks394. 

These tactics involve inserting noisy, 
incorrect, or manipulated data to deceive 
machine learning systems while remaining 
imperceptible or hard to detect for 
humans395,396,397. ‘Poisoned’ or manipulated 
datasets are one of the most common and 
documented attacks to the reliability of 
AI systems398. 

392   Urbina F, Lentzos F, Invernizzi C, Ekins S. 2022. Dual use of artificial-intelligence-powered drug discovery.  
Nature Machine Intelligence, 4(3), 189-191. (https://doi.org/10.1038/s42256-022-00465-9)

393   Collins K et al. 2023. ‘Human Uncertainty in Concept-Based AI Systems.’ Paper presented at the Sixth AAAI/ACM 
Conference on Artificial Intelligence, Ethics and Society (AIES 2023), August 8-10, 2023. Montréal, QC, Canada.

394   Su J, Vargas D V, Sakurai K. 2019 One pixel attack for fooling deep neural networks. IEEE Transactions on 
Evolutionary Computation, 23(5), pp.828-841. (DOI: 10.1109/TEVC.2019.2890858)

395   Verde L, Marulli F, Marrone S. 2021 Exploring the impact of data poisoning attacks on machine learning model 
reliability. Procedia Computer Science, 192, pp.2624-2632. (https://doi.org/10.1016/j.procs.2021.09.032)

396   Xu Y at al. 2021 Artificial intelligence: A powerful paradigm for scientific research. The Innovation, 2(4).  
(https://doi.org/10.1016/j.xinn.2021.100179)

397   Liu Y, Ning P, Reiter M K. 2011 False data injection attacks against state estimation in electric power grids. ACM 
Transactions on Information and System Security (TISSEC), 14(1), pp.1-33. (https://doi.org/10.1145/1952982.1952995)

398   Verde L, Marulli F, Marrone S. 2021 Exploring the impact of data poisoning attacks on machine learning model 
reliability. Procedia Computer Science, 192, pp.2624-2632. (https://doi.org/10.1016/j.procs.2021.09.032)

399   Henderson P, Hu J, Romof J, Brunskill E, Jurafsky D, Pineau J (2020) Towards the systematic reporting of the energy 
and carbon footprints of machine learning. J Mach Learn Res 21(248):1–43

400   Lannelongue L et al. 2023 GREENER principles for environmentally sustainable computational science.  
Nat Comput Sci 3, 514–521. (doi.org/10.1038/s43588-023-00461-y) 

401   Patterson D et al. 2021 Carbon emissions and large neural network training. arXiv preprint. (doi.org/10.48550/
arXiv.2104.10350) 

402   The Royal Society. 2020 Digital technology and the planet: Harnessing computing to achieve net zero.  
See https://royalsociety.org/topics-policy/projects/digital-technology-and-the-planet/ (accessed 21 December 2023).

403   Chithra, J, Vijay, A, & Vieira, D 2014. A study of green computing techniques. Int. J. Comput. Sci. Inf. Technol. 

5. Environmental costs of using AI systems
The collection, analysis, storage and sharing 
of data required for AI-based systems 
has a significant environmental impact399. 
For example, storing a terabyte of data 
is estimated to consume 10kg of carbon 
dioxide annually400, while training a ChatGPT-
style LLM can create 550 tonnes of carbon 
dioxide emissions401. It is estimated that the 
global greenhouse gas emissions of data 
centres are the same as the emissions of US 
commercial aviation, and as datasets and 
models get larger, this is likely to increase.

To mitigate the negative impacts of climate 
change, these systems will need to meet 
the principle of energy proportionality402 and 
environmentally sustainable computational 
science (ESCS) best practices. Other 
developments to improve the environmental 
sustainability of AI-based tools include:

•  Integration of green computing techniques 
into research methods403
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• Certification standards for sustainable lab 
practices. Expanding ‘Green Lab’ grassroots 
networks in conjunction with institutional 
policies can reshape researcher norms404.

• Funders can mandate carbon reporting 
and support upgrades like energy-efficient 
hardware in AI-based research projects405.

• Governmental mandates and regulatory 
pressure – the EU’s carbon reporting rules 
now cover 50,000+ companies406.

• Using AI to optimise and minimise the 
environmental impact of research methods. 
For example, immersive technologies 
provide virtual experiences, minimising 
on-site damage and visualisation which 
can bolster preparation efficiency407,408.

404   Green Your Lab Network. See: https://network.greenyourlab.org/ (accessed March 21 2024)

405   The Royal Society roundtable on AI and climate science, June 2023.

406   More than 50,000 companies to report climate impact in EU after pushback fails. Financial Times. 18 October 2024. 
See: https://www.ft.com/content/a3216188-8e50-4a62-a8d9-e89172b3ddc7 (accessed March 21 2024)

407   The Royal Society. 2023 Science in the metaverse: policy implications of immersive technologies.  
See https://royalsociety.org/news-resources/publications/2023/science-in-the-metaverse/ (accessed 21 December 2023).

408  The Royal Society interviews with scientists and researchers. 2022 - 2023 

409   Penn J. 2024. Historical review on the role of disruptive technologies in transforming science and society.  
The Royal Society. See https://royalsociety.org/news-resources/projects/science-in-the-age-of-ai/

410   Taylor A. 2018 The Automation Charade. LogicMag. 1 August 2018. See: https://logicmag.io/05-the-automation-
charade/ (accessed February 28 2024)

411   World Economic Forum, These are the jobs most likely to be lost – and created – because of AI.  
See: https://www.weforum.org/agenda/2023/05/jobs-lost-created-ai-gpt/ (accessed February 24 2024)

412   Barret, M. The dark side of AI: algorithmic bias and global inequality. See: https://www.jbs.cam.ac.uk/2023/the-dark-
side-of-ai-algorithmic-bias-and-global-inequality/ (accessed December 10 2023)

413    Penn J. 2024. Historical review on the role of disruptive technologies in transforming science and society.  
The Royal Society. See https://royalsociety.org/news-resources/projects/science-in-the-age-of-ai/

414   Wang H et al. 2023 Scientific discovery in the age of artificial intelligence. Nature, 620. 47-60.  
(https://doi.org/10.1038/s41586-023-06221-2)

415   Kazim E, Koshiyama A S. 2021 A high-level overview of AI ethics. Patterns, 2(9). (https://doi.org/10.1016/j.patter.2021.100314)

6. Human cost of training AI systems
The development and use of AI tools relies 
on a critical but often invisible human 
infrastructure. Even though human labour 
is essential for AI deployment, in some 
cases it remains underappreciated under 
the guise of ‘automation’. Technology critic, 
Astra Taylor argues that the discourse of 
automation can be used to marginalise 
certain contributors to the scientific process 
(eg women or ghost workers) and justify 
cost-cutting measures without addressing 
issues of equity and fairness409,410. 

The impact on labour can span from shifts 
in the labour market411 to the exploitation of 
data workers that power large AI systems412. 
Interrogating the organisation of labour can 
contribute towards generating accountability 
to develop responsible AI supply chains413.

Addressing AI ethics in scientific research
There are opportunities for the scientific 
community (from scientists to system developers 
and funders)414 to proactively consider strategies 
to monitor, anticipate and respond to unforeseen 
harms caused by the use of AI systems415. 
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Drawing from interviews and roundtable 
discussions, the following measures were 
suggested to ensure the ethical application 
of AI across sectors:
• Domain-specific taxonomy for harms: 

Establish audits, impact assessments or 
evaluation frameworks to understand socio-
technical harms stemming from different 
fields. Examples include the taxonomy 
published by DeepMind listing different 
types of human-computer interaction, 
environmental and socioeconomic harms416. 
Another example is the multi-stakeholder 
framework developed to evaluate the Social 
Impact of Generative AI in Systems and 
Society. It accounts for harms related to 
representation, cultural values and sensitive 
content, performance, privacy and data 
protection, financial costs, environmental 
costs, and labour costs417. 

• Ethical guidelines and reviews: Ethical 
guidelines and codes of conduct can 
guide design of AI models used for 
science, prevent misuse and establish 
best practices. Examples include Hague 
Ethical Guidelines418, which promote a 
code of conduct to guard against the 
misuse of chemistry research, or UNESCO’s 
guidelines for Ethical Artificial Intelligence, 
the first-ever global standard on AI ethics 
aimed at maximising the benefits and 
minimising the downside risks of the 
use of AI for scientific discoveries419.  
 

416   Weidinger L et al. 2022 Taxonomy of risks posed by language models. In Proceedings of the 2022 ACM 
Conference on Fairness, Accountability, and Transparency (pp. 214-229). (https://doi.org/10.1145/3531146.3533088)

417   Solaiman, I et al. 2023. Evaluating the Social Impact of Generative AI Systems in Systems and Society. arXiv preprint 
(arXiv:2306.05949)

418   The Organisation for the Prohibition of Chemical Weapons (OPCW). The Hague Ethical Guidelines.  
See: https://www.opcw.org/hague-ethical-guidelines (accessed 28 February 2024)

419   UNESCO Recommendation on ethics of artificial intelligence. 2022. See: https://www.unesco.org/en/articles/
recommendation-ethics-artificial-intelligence (accessed 6 February 2024)

420   United Nations, Office of Disarmament Affairs. Confidence Building Measures. See:  https://disarmament.unoda.org/
biological-weapons/confidence-building-measures/  (accessed 21 December 2023)

421   Shoker S et al. 2023 Confidence-building measures for artificial intelligence: Workshop proceedings. arXiv preprint 
(arXiv:2308.00862)

422   Urbina F, Lentzos F, Invernizzi C, Ekins S. 2023 Preventing AI From Creating Biochemical Threats.  
Journal of Chemical Information and Modeling, 63(3), 691-694 (https://doi.org/10.1021/acs.jcim.2c01616)

Further domain-specific guidance is needed 
to ensure scientists across domains and 
sectors can make informed decisions when 
integrating AI into their work.

• Communication and knowledge sharing: 
Drawing from the United Nations Office of 
Disarmament Affairs420, US-based private 
sector companies (OpenAI, Anthropic, 
Microsoft, Hugging Face), and civil society 
have put forward a proposal to improve 
trust through confidence-building measures, 
such as communication and coordination, 
observation and verification, cooperation 
and integration, and transparency421.

• Sanctions and restrictions: Explore 
the regulation of specific software and 
applications in industry and academia, and 
the viability of limiting access to tools and 
models with high potential for misuse422. 

• Public engagement: Explore new 
governance approaches to engage affected 
publics in the co-construction of constraints 
and guardrails. A strategy to communicate 
risk to the public also needs to be 
considered, while preventing a general loss 
of trust in science.  

https://doi.org/10.1145/3531146.3533088
https://www.opcw.org/hague-ethical-guidelines
https://disarmament.unoda.org/biological-weapons/confidence-building-measures/
https://disarmament.unoda.org/biological-weapons/confidence-building-measures/
https://doi.org/10.1021/acs.jcim.2c01616
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CASE STUDY 3

AI and climate science

423   Huntingford C, Jeffers E S, Bonsall M B, Christensen H M, Lees T, Yang H. 2019 Machine learning and artificial 
intelligence to aid climate change research and preparedness. Environmental Research Letters, 14(12), 124007.  
(DOI 10.1088/1748-9326/ab4e55)

424   National Academy of Sciences. 2024 Toward a New Era of Data Sharing: Summary of the US-UK Scientific Forum  
on Researcher Access to Data. Washington, DC: The National Academies Press. https://doi.org/10.17226/27520.

425   Kadow, C, Hall, DM, Ulbrich, U, 2020. Artificial intelligence reconstructs missing climate information. Nature 
Geoscience, 13, pp.408-413. (https://doi.org/10.1038/s41561-020-0582-5)

426   NASA Centre for Climate Simulation. See https://www.nccs.nasa.gov/news-events/nccs-highlights/
acceleratingScience. (Accessed 21 December 2023)

427   Buizza, C at al 2022. Data learning: Integrating data assimilation and machine learning. Journal of Computational 
Science, 58, p.101525. (https://doi.org/10.1016/j.jocs.2021.101525)

428   Ise, T, Oba, Y. 2019. Forecasting climatic trends using neural networks: an experimental study using global historical 
data. Frontiers in Robotics and AI, 32. (https://doi.org/10.3389/frobt.2019.00032)

429   Ham, YG, Kim, JH, Luo, JJ. 2019. Deep learning for multi-year ENSO forecasts. Nature, 573, 568-572.  
(https://doi.org/10.1038/s41586-019-1559-7)

430   Rasp, S, Pritchard, MS., & Gentine, P. 2018. Deep learning to represent sub grid processes in climate 
models. Proceedings of the National Academy of Sciences, 115, 9684-9689. (https://doi.org/10.1073/pnas.181028611)

431   Zheng, G, Li, X, Zhang, RH, Liu, B 2020. Purely satellite data–driven deep learning forecast of complicated tropical 
instability waves. Science advances, 6, eaba1482. (DOI: 10.1126/sciadv.aba1482)

432   Bi, K, Xie, L, Zhang, H, Chen, X, Gu, X, Tian, Q. 2023. Accurate medium-range global weather forecasting with 3D 
neural networks. Nature, 619, 533-538. (https://doi.org/10.1038/s41586-023-06185-3)

433   Wong, C. 2023. DeepMind AI accurately forecasts weather-on a desktop computer. Nature. 14 November 2023 
(https://doi.org/10.1038/d41586-023-03552-y)

434   The Royal Society. 2020 Digital technology and the planet: Harnessing computing to achieve net zero.  
See https://royalsociety.org/topics-policy/projects/digital-technology-and-the-planet/ (accessed 21 December 2023).

As AI and ML capabilities become further 
integrated into climate science research and 
applications, they are expanding the capacity 
of scientists and policy makers to mitigate the 
climate crisis423. 

Opportunities for AI in climate science research
Realising the potential of climate science data 
can be difficult due to the heterogeneous 
nature of environmental data. This presents 
a challenge in linking data together due 
to misaligned data across spatiotemporal 
resolutions; varying privacy and security levels 
(particularly in relation to satellite imaging); and 
a lack of regulation424. 

DL techniques can interpolate measurement 
gaps for intricate pattern recognition in fields like 
space weather forecasting, a technique used 
in NASA’s Centre for Climate Simulation425, 426. 

If done successfully, this fusion of datasets can 
improve the accuracy of models and estimates, 
contributing to long-term weather forecasting, 
which supports disaster preparedness and 
resource management for extreme events427. 

Other AI techniques have demonstrated 
effectiveness in forecasting global mean 
temperature changes428, predicting climatic 
phenomena like El Niño429, cloud systems430, 
and regional weather patterns, such as 
rainfall in specific areas431. For instance, a 
2023 Nature paper showed an AI model had 
predicted weather better than the world’s 
most advanced forecasting system432, soon 
after, DeepMind’s ML approach surpassed 
even that benchmark433. The Royal Society’s 
2020 report, Digital technology and the 
planet: Harnessing computing for net zero, 
also outlines the role AI can play in achieving 
global net zero ambitions434.
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AI for climate preparedness and  
decision-making
Adopting a systems approach435 to AI in 
climate science could enable more effective 
climate decision-making436. AI-driven climate 
models not only simulate complex systems, 
but reinforced learning can also contribute 
to sustainable policymaking through the 
systematic evaluation of climate actions, 
trade-offs, and risks437. An example of this 
includes digital twins, a virtual representation 
of a physical asset which can be used 
to understand, predict, and optimise the 
performance of this asset438.

435   The Royal Academy of Engineering 2020 Net Zero: A systems perspective on the climate challenge.  
See raeng.org.uk/publications/reports/net-zero-a-systems-perspective-on-the-climate-chal  
(accessed 14 October 2020)

436   The Royal Society. 2021 Computing for net zero: how digital technology can create a ’control loop for the protection 
of the planet’. See https://royalsociety.org/-/media/policy/projects/climate-change-science-solutions/climate-science-
solutions-computing.pdf (accessed 21 December 2023) 

437   Abrell J, Kosch M, Rausch S (2019) How effective was the UK carbon tax?—A machine learning approach to policy 
evaluation. SSRN Scholarly Paper ID 3372388. Social Science Research Network, Rochester. 10.2139/ssrn.3372388

438   The Royal Society. 2020 Digital technology and the planet: Harnessing computing to achieve net zero.  
See https://royalsociety.org/topics-policy/projects/digital-technology-and-the-planet/ (accessed 21 December 2023)

439   The Royal Society. 2020 Digital technology and the planet: Harnessing computing to achieve net zero.  
See https://royalsociety.org/topics-policy/projects/digital-technology-and-the-planet/ (accessed 21 December 2023).

440   The European Space Agency. Destination Earth. See https://www.esa.int/Applications/Observing_the_Earth/
Destination_Earth. (accessed 21 December 2023)

441   Accenture. Case Study: Tuvalu. See https://www.accenture.com/us-en/case-studies/technology/tuvalu.  
(accessed 21 December 2023)

The European Space Agency’s Destination 
Earth is developing a digital twin that can 
generate rich data flows to enable a ‘control 
loop’ for the planet’s emissions439. This can 
facilitate monitoring of the natural and human 
activity contributing to climate change, allow 
experts to anticipate and plan for extreme 
events and adapt policies to climate related 
challenges440. Real-world applications, like 
Tuvalu’s digital twin of the island nation, to 
safeguard its existence against sea level rise 
demonstrates the promise and the vital need 
for this technological development441.
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Research ethics challenges in climate science  
AI-based climate science holds great potential 
for solving global climate change challenges. 
However, this potential comes with challenges 
to research ethics. Identifying the risks and 
minimising pitfalls remains vital to maximising 
positive impact.

1. Environmental costs of AI
Running complex simulations can have 
high carbon footprints from the immense 
computational power required, potentially 
offsetting intended environmental benefits 
of climate science research if sustainability 
practices are not integrated442. 

2. Data bias and inaccuracies
Bias and inaccuracies in training data 
presents another key challenge. For 
instance, models disproportionately trained 
on Western populations risk overlooking 
issues in the Global South and entrenching 
unfairness for disadvantaged regions. 
Ongoing participation, auditing, and 
updating of systems with localised data 
is critical for equity443. 

442   Henderson P, Hu J, Romof J, Brunskill E, Jurafsky D, Pineau J 2020. Towards the systematic reporting of the energy 
and carbon footprints of machine learning. J Mach Learn Res 21:1–43

443   Royal Society and Department for Science, Innovation and Technology workshop on horizon scanning AI safety risks 
across scientific disciplines, October 2023. See https://royalsociety.org/current-topics/ai-data/ (accessed 7 May 2024)

444   AbdulRafiu A, Sovacool B K, Daniels C. 2022 The dynamics of global public research funding on climate change, 
energy, transport, and industrial decarbonisation. Renewable and Sustainable Energy Reviews, 162, 112420.  
(https://doi.org/10.1016/j.rser.2022.112420)

445   Grantham Research Institute on Climate Change and the Environment. What opportunities and risks does AI present 
for climate action? See: https://www.lse.ac.uk/granthaminstitute/explainers/what-opportunities-and-risks-does-ai-
present-for-climate-action/ 

446   Zipper S C et al. 2019 Balancing open science and data privacy in the water sciences. Water Resources Research, 
55, 5202-5211.(https://doi.org/10.1029/2019WR025080)

447   Donovan K P. 2012 Seeing like a slum: Towards open, deliberative development. Georgetown Journal of  
International Affairs.

3. Global funding and grants
There is a significant global disparity in 
funding and grant distribution.  An analysis 
into energy and climate research funding 
between 1990 and 2020 global disparity in 
funding distribution with Western countries 
(European Commission, UK, and US) 
receiving most of the funding444. Notably, 
the paper found that no research institution 
from Africa ranked among the top 10 funded 
institutions. Increased investment in AI 
initiatives for underrepresented regions 
is needed to support capacity-building 
and fostering of climate scientists in the 
Global South445.

4. Sensitive data sharing
Environmental data can contain 
sensitive information, include private or 
personal details that can be linked to 
specific, nonconsenting individuals or 
communities446. High-resolution spatial 
data, and digital traces pose privacy risks, 
which are magnified when researchers 
lack cultural understanding and sensitivity 
towards different communities. For example, 
while well intentioned, the digitisation of 
land records to increase researcher access 
to data can result in private actors like 
landowners with more financial resources 
to capitalise on this new data447. 
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Environmentally sensitive data can also 
adversely impact the environment448. For 
example, sharing biodiversity data, such as 
nesting locations of rare birds, can lead to 
bad actors harming those environments449.

Strategies for ethical AI-based research 
practices in climate science 
1. Pursuing energy proportionality

Develop strategies to ensure that 
technologies developed in pursuit of net 
zero deliver environmental benefits that 
outweigh their emissions450. Interdisciplinary 
research on carbon accounting and impact 
assessment tools like the Green Algorithms 
Project451 can contribute towards evaluating 
and mitigating the environmental impact 
of computational processes used in 
climate science. 

448   NBN. Sensitive Data. See https://nbn.org.uk/sensitive-data/ (accessed 6 March 2024)

449   Ibid.

450   The Royal Society. 2020 Digital technology and the planet: Harnessing computing to achieve net zero.  
See https://royalsociety.org/topics-policy/projects/digital-technology-and-the-planet/ (accessed 21 December 2023).

451   Green Algorithms Project. See https://www.green-algorithms.org/ (accessed 21 December 2023)

452   National Academy of Sciences. 2024 Toward a New Era of Data Sharing: Summary of the US-UK Scientific Forum  
on Researcher Access to Data. Washington, DC: The National Academies Press. https://doi.org/10.17226/27520.

453   Pacific Community. Statistics for Development Division. See https://sdd.spc.int/ (accessed 6 March 2024)

454   The Royal Society. 2023 Creating resilient and trusted data systems. See https://royalsociety.org/topics-policy/
projects/data-for-emergencies/ (accessed 21 December 2023).

455   Global Partnership on Artificial Intelligence. 2023 Designing Trustworthy Data Intuitions - Scanning the Local Data 
Ecosystem in Climate-Induced Migration in Lake Chad Basin - Pilot Study in Cameroon. See: https://gpai.ai/projects/
data-governance/  (accessed 6 March 2024)

456   Wilkinson M. D., et al. 2016 The FAIR Guiding Principles for scientific data management and stewardship. Scientific 
data, 3(1), 1-9. (doi: 10.1038/sdata.2016.18.)

457   Global Indigenous Data Alliance. Care Principles for Indigenous Data Governance. See https://www.gida-global.org/
care (accessed 21 December 2023)

2. Improving global researcher access to data
The disparity in researcher access to 
data raises concerns about the equitable 
development and application of AI452. 
This could hinder the development of 
effective climate solutions tailored to the 
unique challenges of specific communities. 
Networks such as the Pacific Community’s 
Statistics for Development Division can 
promote equitable access to data across 
diverse contexts, fostering collaboration 
and knowledge sharing453. Similarly, the 
establishment of trusted data institutions 
can contribute towards enhancing data 
sharing and usage to address emergencies 
and crises454 455. 

3. Contextualising data governance
Universal approaches to open data do not 
always engage with minority groups’ rights 
and interests. Existing data sharing principles 
like FAIR (findable, accessible, interoperable, 
reusable)456 can be complemented by 
people and purpose-oriented governance 
principles like the CARE Principles for 
Indigenous Data Governance (collective 
benefit, authority to control, responsibility, 
ethics) that considers a broader approach 
to sensitive data457.  

https://nbn.org.uk/sensitive-data/
https://royalsociety.org/topics-policy/projects/digital-technology-and-the-planet/
https://www.green-algorithms.org/
https://sdd.spc.int/
https://royalsociety.org/topics-policy/projects/data-for-emergencies/
https://royalsociety.org/topics-policy/projects/data-for-emergencies/
https://gpai.ai/projects/data-governance/
https://gpai.ai/projects/data-governance/
https://www.gida-global.org/care
https://www.gida-global.org/care
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Left
Graphcore Stereo Image Matching 
Benchmark, October 2015.
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Conclusion

As explored throughout the report, the 
applications of AI in scientific research are 
bringing a new age of possibilities and 
challenges. The transformative potential 
of AI, fuelled by big data and advanced 
techniques, offers substantial opportunities 
across domains. From mapping deforestation 
to aiding drug discovery and predicting 
rare diseases, the applications are vast and 
promising. Through the case studies on 
climate science, material science, and rare 
disease diagnosis, this report envisions a 
future in which AI can be a powerful tool for 
scientific researchers.

However, these opportunities bring about a 
series of challenges related to reproducibility, 
interdisciplinary collaboration, and ethics. 
Finding a balance in which scientists can 
harness the benefits of automation and the 
accelerated pace of discovery while ensuring 
research integrity and responsible use of AI 
will be essential. Following the Royal Society’s 
commitment to ensuring science – and this 
case AI – is applied for the benefit of humanity, 
the report calls for collective efforts in 
addressing these challenges. 

Moving forward, and according to the findings 
of this report, three areas of action require 
attention from scientific communities and 
relevant policy makers. 

The first is to address issues of access and 
capability to use AI in science. Access to 
computing resources, high quality datasets, 
AI tools and relevant expertise is critical to 
achieve scientific breakthroughs. At the time of 
publication, access to essential infrastructures 
remained unequally distributed. This, coupled 
with a growing influence of the private 
sector as highlighted in Chapter 4 can have 
implications on the future of university-based 
AI research. Another challenge in this area is 
knowledge siloes between AI experts and 
scientific domain experts (Chapter 3). To ensure 
equitable distribution of AI across research 
communities, actions need to go beyond 
facilitating access, and focus on enhancing 
capabilities to collaborate, co-design and 
use AI across different scientific fields and 
research environments.

Second, open science principles and practices 
offer a clear pathway to improve transparency, 
reproducibility, and public scrutiny – all of 
which have proven challenging in AI-based 
scientific projects. As stressed in Chapter 2, 
the stakes of not addressing these issues are 
high, posing risks not just to science but also 
to society if the deployment of unreliable or 
erroneous AI-based outputs leads to harms. 
Further work is needed to understand the 
interactions between open science and AI for 
science and how to best minimise safety and 
security risks stemming from the open release 
of models and data. 
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Third, as AI’s role expands in science, ethical 
and safety considerations need to be centred 
in its design and implementation (Chapter 
5). The growing reliance on large datasets, 
prompts questions about the potential 
misuse of sensitive information and biases 
that could perpetuate inequalities or lead 
to incorrect conclusions. The autonomous 
nature of AI systems also introduces safety 
risks, especially in fields like healthcare or 
environmental monitoring, where errors 
could have severe consequences; or in 
fields such as chemistry and biology, where 
datasets and models can be repurposed with 
malicious intent. Addressing these challenges 
requires interdisciplinary collaboration and 
building scientists’ capacity to anticipate 
risk and provide oversight that minimises 
potential harms.

Looking ahead, further exploration by the 
scientific community and policymakers is 
needed to understand the implications of AI 
on the future of science. Questions about 
how universities can adapt training and skill 
requirements, how funders can continue to 
support non-AI scientific work and how to 
optimise AI for environmental sustainability 
are key to understand the impact of this 
on technology in science, society, and on 
the planet.
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Left
Microsoft Research ResNet-18 
Training, April 2017.
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APPENDIX 2

Further details on methodology 

Summary of research activities
• Three commissioned research projects 

including a historical review on the role 
of disruptive technologies in transforming 
science, a taxonomy of the use of artificial 
intelligence in science, technology, 
engineering and medicine, and a patent 
landscape review of artificial intelligence 
and related inventions.

• 30+ semi-structured interviews

• Four roundtables on the topics of 
reproducibility, interdisciplinarity, climate 
science research and the impact of large 
language models (LLMs) in science. 

• Horizon scanning exercise on AI risks for 
science co-organised with the Department 
of Science, Innovation and Technology (DSIT)

• International US-UK Scientific Forum on 
Researchers Access to Data, co-hosted by 
the Royal Society and the National Academy 
of Science 

Commissioned evidence-gathering 
and reviews
• Penn J, 2024. Historical review on the role 

of disruptive technologies in transforming 
science and society.

• Berman B, Chubb J, and Williams K, 2024. 
The use of artificial intelligence in science, 
technology, engineering, and medicine.

• IP Pragmatics, 2024. Artificial intelligence 
related inventions.
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Event and research activities 
The Royal Society would like to thank all those who contributed to the development of this 
project, in particular through participation in the following events.

30+ interviews, August 2022 – June 2023
Royal Society staff interviewed scientists and researchers across scientific disciplines on 
emerging themes and technologies in their fields. 

Roundtable on immersive technologies in scientific research, June 2022
The Royal Society hosted a roundtable at the University of Exeter, as part of the ‘Creating 
Connections’ events series that convened academics and industry professionals from the 
Southwest of England to discuss the policy priorities for the use of immersive technologies 
in scientific research. The roundtable was chaired by Professor Samuel Vine, Professor of 
Psychology at the University of Exeter. The key topics discussed were the challenges faced 
by industry and academic researchers working with immersive technologies including training, 
sustainability, and access to markets. 

Roundtable on reproducibility, April 2023
The Royal Society’s roundtable on the challenges of reproducibility in AI-based scientific research 
provided insights from Professor Sabina Leonelli and Joelle Pineau, and multiple reproducibility, 
computer science and open science experts. 

Name Organisation

Dorothy Bishop FRS University of Oxford

Odd Erik Gunderson Norwegian University of Science and Technology; Aneo

Sayash Kapoor Princeton University

Mark Kelson University of Exeter

Rebecca Kirk PLOS

Sabina Leonelli University of Exeter

Ralitsa Madsen University of Dunde; UK Committee on Research Integrity

Victoria Moody JISC

Joelle Pineau McGill University; Meta AI

Susanna-Assunta Sanson University of Oxford

Malvika Sharan Alan Turing Institute; Open Life Science

Joaquin Vanschoren Eindhoven University of Technology; OpenML
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Roundtable on AI and climate science, June 2023
The Royal Society convened a roundtable for climate and data scientists to explore the role of 
AI in climate science research, share insights, challenges, and innovative ideas for the future of 
this field. Dame Professor Jane Francis FRS provided insights from role as director of the British 
Antarctic Survey.

Name Organisation

Anna-Louise Ellis Met Office

Jane Francis FRS British Antarctic Survey

Anna Hogg University of Leeds

Scott Hosking British Antarctic Survey; The Alan Turing Institute

Konstantin Klemmer Microsoft Research

Joycelyn Longdon University of Cambridge; Climate in Colour

Shakir Mohamed Google DeepMind

Alistair Nolan OECD

Tim Palmer University of Oxford

Suman Ravuri Google DeepMind

Emily Shuckburgh University of Cambridge

Philip Stier University of Oxford

Dave Topping University of Manchester

Richard Turner University of Cambridge
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Roundtable on interdisciplinarity, July 2023
The Royal Society convened a roundtable on the role of interdisciplinarity in AI-driven scientific 
research. The roundtable provided a comprehensive exploration of interdisciplinarity’s pivotal 
role in navigating the transformative landscape of AI-driven scientific research, featuring insights 
from Professor Alison Noble FRS, prominent experts and organisations across academia and the 
private sector. 

Name Organisation

Ankit Agrawal Northwestern University

Seth Baum Global Catastrophic Risk Institute

Michael Castelle University of Warwick 

Claude Chelala Queen Mary University of London

Gareth Conduit University of Cambridge

James Dracott UKRI

Victoria Henickx KU Leuven

Georgios Leontidis The University of Aberdeen 

Alison Noble FRS University of Oxford

Alistair Nolan OECD

Bradley Love University College London 

Cecilia Mascolo University of Cambridge

Raffaella Mulas Vrije Universiteit Amsterdam

Mirco Musolesi Univerity College London

Daniele Quercia King's College London; Nokia Bell Lab Cambridge 

Verena Reiser Google DeepMind

Reuben Shipway University of Plymouth

Tommaso Venturini University of Geneva; CNRS

Hujun Yin University of Manchester
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Roundtable on large language models and scientific research, July 2023
The Royal Society convened a roundtable on opportunities and risks of using LLMs in scientific 
research in which Professor Andrew Blake FRS and Gary Marcus provided opening remarks. 
The roundtable on the use of Large Language Models (LLMs) in scientific research presented 
both the positive potential and challenges associated with their integration. Participants 
stressed the importance of developing strategies to mitigate risks and ensuring a balanced 
approach to the integration of LLMs in research as crucial for the responsible advancement  
of AI technologies.

Name Organisation

Seth Baum Global Catastrophic Risk Institute

Andrew Blake FRS Scientific advisor and AI consultant, University of Cambridge

Phil Blunsom University of Oxford

Anthony Cohn University of Leeds; The Alan Turing Institute

Jeff Dalton University of Glasgow

Yarin Gal University of Oxford

Gabe Gomes Carnegie Mellon University

Andres Guadamuz University of Sussex

Atoosa Kasirzadeh University of Edinburgh

Samuel Kaski University of Manchester; Aalto University

Hannah Kirk University of Oxford; The Alan Turing Institute

Gary Marcus New York University

Jessica Montgomery University of Cambridge

Denis Newman-Griffis University of Sheffield

Alison Noble FRS University of Oxford

Alistair Nolan OECD

Johan Ordish Medicines and Healthcare products Regulatory Agency (MHRA)

Michael Osborne University of Oxford; Mind Foundry

Matthias Rillig Freie Universität Berlin

Edward Tian GPT Zero

Michael Woolridge University of Oxford

US-UK Scientific Forum on Researcher Access to Data, September 2023
The Forum addressed the evolution of researcher access to data; best practices and lessons learned 
from fields that are on the forefront of data sharing (ie climate studies, astrophysics, biomedicine); 
and challenges related to pressing societal problems such as online information (and misinformation), 
modelling for pandemics, and using data in emergencies (See https://www.nasonline.org/programs/
scientific-forum/scientificforum/researcher-access.html for more information)

https://www.nasonline.org/programs/scientific-forum/scientificforum/researcher-access.html
https://www.nasonline.org/programs/scientific-forum/scientificforum/researcher-access.html
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Workshop on horizon scanning AI safety risks across scientific disciplines, October 2023
Ahead of the Global AI Safety Summit, being organised by the UK Government, the Royal Society 
will be hosting an official pre-Summit workshop in partnership with the Department for Science, 
Innovation and Technology. The event brought together senior scientists from academia and 
industry to horizon-scan the risks associated with AI across scientific disciplines.  

Name Organisation

Alessandro Abate University of Oxford 

Andrew Blake FRS Scientific advsior and AI consultant, University of Cambridge

Craig Butts University of Bristol 

Lee Cronin University of Glasgow 

Gwenetta Curry University of Edinburgh 

Christl Donnelly FRS Imperial College London 

Anthony Finkelstein  City, University of London 

Jacques Fleuriot University of Edinburgh 

Ben Glocker Imperial College London 

Julia Gog University of Cambridge 

Cathy Holloway University College London 

Caroline Jay University of Manchester 

Alexander Kasprzyk University of Nottingham 

Frank Kelly FRS Imperial College London 

Georgia Keyworth Department for Science, Innovation and Technology 

Bradley Love University College London 

Carsten Maple University of Warwick 

Alexandru Marcoci Centre for the Study of Existential Risk, University of Cambridge 

Chris Martin Department for Science, Innovation and Technology 

Cecilia Mascolo University of Cambridge

Emran Mian Department for Science, Innovation and Technology 

Daniel Mortlock Imperial College London 

Gina Neff University of Oxford 

Cassidy Nelson Centre for Long Term Resilience 

Alison Noble FRS University of Oxford

Alistair Nolan OECD

Abigail Sellen FRS Microsoft Research Cambridge 

Karen Tingay Office for Statistics Regulation 

Daniel Tor Department for Science, Innovation and Technology 

Hujun Yin University of Manchester

http://www.gov.uk/government/organisations/department-for-science-innovation-and-technology
http://www.gov.uk/government/organisations/department-for-science-innovation-and-technology
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Name Organisation

Steven Abel Durham University 

Paul Beasley Siemens 

Viscount Camrose House of Lords, DSIT 

Sarah Chan University of Edinburgh 

Linjiang Chen University of Birmingham 

Peter Falkingham Liverpool John Moores University 

Tom Fiddian Innovate UK 

Michael Fisher University of Manchester 

Seraphina Goldfarb-Tarrant Cohere 

Sabine Hauert University of Bristol 

Richard Horne British Antarctic Survey

Scott Hosking British Antarctic Survey; The Alan Turing Institute

Rohan Kemp Department for Science, Innovation and Technology 

Ottoline Leyser UK Research and Innovation 

Richard Mallah Future of Life Institute 

Thomas Nowotny University of Sussex 

Yannis Pandis Pfizer 

Maria Perez-Ortiz University College London 

Nathalie Pettorelli Zoological Society of London 

Reza Razavi King’s College London 

Yvonne Rogers FRS University College London 

Sophie Rose Centre for Long Term Resilience 

Stuart Russell UC Berkeley, Future of Life Institute 

Rossi Setchi Cardiff University 

Nigel Shadbolt FRS University of Oxford 

Shaarad Sharma Government Office for Science 

Mihaela van der Schaar  University of Cambridge 

Mark Wilkinson University of Sheffield 

Study on red teaming LLM’s for resilience to scientific disinformation, October 2023
Ahead of the Global AI Safety Summit, being organised by the UK Government, the Royal Society 
and Humane Intelligence brought together 40 postgraduate students in health and climate 
sciences to scrutinise how potential vulnerabilities in LLMs (Meta’s Llama 2) could enable the 
generation and spread of scientific misinformation (See Royal Society website for more information).
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